• Title/Summary/Keyword: Pressure resistance

Search Result 2,182, Processing Time 0.03 seconds

Characteristics of Plasma Electrolytic Oxidation Coatings on Mg-Zn-Y Alloys Prepared by Gas Atomization (가스 분사법으로 제조한 Mg-Zn-Y 합금의 플라즈마 전해 산화 피막 특성에 관한 연구)

  • Chang, Si-Young;Cho, Han-Gyoung;Lee, Du-Hyung;Kim, Taek-Soo
    • Journal of Powder Materials
    • /
    • v.14 no.6
    • /
    • pp.372-379
    • /
    • 2007
  • The microstructure, mechanical and electrochemical properties of plasma electrolytic coatings (PEO) coatings on Mg-4.3 wt%Zn-1.0 wt%Y and Mg-1.0 wt%Zn-2.0 wt%Y alloys prepared by gas atomization, followed by compaction at 320 for 10 min under the pressure of 700 MPa and sintering at 380 and 420 respectively for 24 h, were investigated, which was compared with the cast Mg-1.0 wt%Zn alloy. All coatings consisting of MgO and $Mg_2SiO_4$ oxides showed porous and coarse surface features with some volcano top-like pores distributed disorderly and cracks between pores. In particular, the surface of coatings on Mg-1.0 wt%Zn-2.0 wt%Y alloy showed smaller area of pores and cracks compared to the Mg-4.3 wt%Zn-1.0 wt%Y and Mg-1.0 wt%Zn alloys. The cross section micro-hardness of coatings on the gas atomized Mg-Zn-Y alloys was higher than that on the cast Mg-1.0 wt%Zn alloy. Additionally, the coated Mg-1.0 wt%Zn-2.0 wt%Y alloy exhibited the best corrosion resistance in 3.5%NaCl solution. It could be concluded that the addition of Y has a beneficial effect on the formation of protective and hard coatings on Mg alloys by plasma electrolytic oxidation treatment.

Characteristic Comparison of MAZO and MIZO Thin Films with Mg and ZnO Variation (Mg와 ZnO 함량변화에 따른 MAZO, MIZO 박막의 특성비교)

  • Jang, Jun Sung;Kim, In Young;Jeong, Chae Hwan;Moon, Jong Ha;Kim, Jin Hyeok
    • Current Photovoltaic Research
    • /
    • v.3 no.3
    • /
    • pp.101-105
    • /
    • 2015
  • ZnO is gathering great interest for large square optoelectrical devices of flat panel display (FHD) and solar cell as a transparent conductive oxide (TCO). Herewith, Mg and IIIA (Al, In) co-doped ZnO films were prepared on SLG substrate using RF magnetron sputtering system. The effect of variation of atomic weight % of Mg and ZnO have been investigated. The atomic weight % Al and In are of 3% and kept constant throughout. The numbers of samples were prepared according to their different contents, which are $M_{3%}AZO_{94%}$, $M_{4%}AZO_{93%}-(MAZO)$ and $M_{3%}IZO_{94%}$, $M_{4%}IZO_{93%}-(MIZO)$ respectively. A RF power of 225 W and working pressure of 6 m Torr was used for the deposition at $300^{\circ}C$. All of the two thin film show good uniformity in field emission scanning electron microscopy image. $M_{3%}AZO_{94%}$ thin film shows overall better performance among the all. The film shows the best lowest resistivity, carrier concentration, mobility and Sheet resistance and is found to be are of $8.16{\times}10^{-4}{\Omega}cm$, $4.372{\times}10^{20}/cm^3$, $17.5cm^2/vs$ and $8.9{\Omega}/sq$ respectively. Also $M_{3%}AZO_{94%}$ thin film shows the relatively high optical band gap energy of 3.7 eV with high transmittance more than 80% in visible region required for the better solar cell performance.

Effects of Aquarobics on Metabolic Syndrome and Health Fitness in Abdominally Obese Elderly Women (아쿠아로빅 운동이 복부비만 노인여성의 대사증후군 및 건강체력에 미치는 영향)

  • Park, Young-Ah;Kim, Dong-Hee
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.8
    • /
    • pp.5180-5188
    • /
    • 2015
  • The purpose of this study was to investigate the effects of a 12-weeks aquarobics on metabolic syndrome risk factors and health fitness in 25 abdominally obese elderly women. As the results, while waist circumference(87.40/82.76cm, p<.01) decreased, HDL-C(41.13/45.42mg/dl, p<.05) increased after the exercise program. Blood pressure and TG, however, decreased with no significance. And while muscle strength increased(17.06/19.08kg, p<.05), the increase in flexibility, muscle endurance, and cardiopulmonary endurance and the decrease in body fat showed some positive effects of the exercise program. In conclusion, we found that the aquarobics improves the aging-induced deterioration in the muscular skeletal function by lowering abdominal obesity and improving metabolic syndrome and physical fitness for health. In addition, the aquarobics can be an effective alternative to an aerobics or a resistance exercise on the ground.

Indium Tin Oxide (ITO) Nano Thin Films Deposited by a Modulated Pulse Sputtering at Room Temperature (모듈레이티드 펄스 스퍼터링으로 상온 증착한 Indium-Tin-Oxide (ITO) 나노 박막)

  • You, Younggoon;Jeong, Jinyong;Joo, Junghoon
    • Journal of the Korean institute of surface engineering
    • /
    • v.47 no.3
    • /
    • pp.109-115
    • /
    • 2014
  • High power impulse magnetron sputtering (HIPIMS), also known as the technology is called peak power density in a short period, you can get high, so high ionization sputtering rate can make. Higher ionization of sputtered species to a variety of coating materials conventional in the field of improving the characteristics and self-assisted ion thin film deposition process, which contributes to a superior being. HIPIMS at the same power, but the deposition speed is slow in comparison with DC disadvantages. Since recently as a replacement for HIPIMS modulated pulse power (MPP) has been developed. This ionization rate of the sputtered species can increase the deposition rate is lowered and at the same time to overcome the problems to be reported. The differences between the MPP and the HIPIMS is a simple single pulse with a HIPIMS whereas, MPP is 3 ms in pulse length is adjustable, with the full set of multi-pulses within the pulse period and the pulse is applied can be micro advantages. In this experiment, $In_2O_3$ : $SnO_2$ composition ratio of 9 : 1 wt% target was used, Ar : $O_2$ flow rate ratio is 4.8 to 13.0% of the rate of deposition was carried out at room temperature. Ar 40 sccm and the flow rate of $O_2$ and then fixed 2 ~ 6 sccm was compared against that. The thickness of the thin film deposition is fixed at 60 nm, when the partial pressure of oxygen at 9.1%, the specific resistance value of $4.565{\times}10^{-4}{\Omega}cm$, transmittance 86.6%, mobility $32.29cm^2/Vs$ to obtain the value.

The Field Application of Miniature Cone Penetration Test System in Korea (소형콘관입시험(Miniature Cone Penetration Test)의 국내현장 적용)

  • Yoon, Sung-Soo;Ji, Wan-Goo;Kim, Jun-Ou;Kim, Rae-Hyun
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.03a
    • /
    • pp.349-360
    • /
    • 2009
  • The cone penetration test(CPT) has gained its popularity in site characterization indebted by its reliability, speed, economy, and automatic measurement system since its development in the 1930s. The CPT results, commonly consisting of cone tip resistance, sleeve friction, and pore water pressure measurements, allow us to classify soils as well as to reveal their engineering characteristics. The site condition at which the CPT is allowable is often dependent on the capacity of a CPT system. In Korea, it has been considered that the CPT could be appled only to soft soils in most cases because CPT systems available for stiff soils are very rare due to their expensive procurement and maintenance cost. Luoisiana Transportation Research Center(LTRC) has developed and implemented a field-rugged continuous intrusion miniature cone penetration test(CIMCPT) system since the late 1990s. The miniature cone penetrometer has a sectional cone area of $2cm^2$ allowing system capacity reduction compared to the standard $10cm^2$ cone penetrometer. The continuous intrusion mechanism allows fast and economic site investigation. Samsung Engineering & Construction has recently developed and implemented a similar CIMCPT system based on its original version developed in LTRC. The performance of the Samsung CIMCPT system has been investigated by calibration with the standard CPT system at a well-characterized test site in Pusan, Korea. In addition, scale effect between the miniature cone penetrometer and the standard cone penetrometer has been investigated by comparing the field test results using the both systems.

  • PDF

A Field Study on the Constructability and Performance Evaluation of Waveform Micropile (현장시험을 통한 파형 마이크로파일의 시공성 및 거동 평가)

  • Jang, Young-Eun;Han, Jin-Tae
    • Journal of the Korean Geotechnical Society
    • /
    • v.32 no.10
    • /
    • pp.67-79
    • /
    • 2016
  • Waveform micropile is an advanced construction method that combined the concept of conventional micropile with jet grouting method. This new form of micropile was developed to improve frictional resistance, which consequently leads to achieving higher bearing capacity and cost efficiency. Two field tests were conducted to examine the field applicability as well as to verify the effects of bearing capacity enhancement. In particular, waveform micropile construction using jet grouting method was performed to evaluate the viability of waveform micropile installation. After testing, the surrounding ground was excavated to check the accomplishment on the shape of waveform micropile. The result showed that waveform micropile can be installed by adjusting the grouting time and pressure. In the loading tests, waveform micropile's bearing capacity increased by 1.4 to 2.3 times depending on their shapes when compared with conventional micropile. Overall results clearly demonstrated that waveform micropile is an enhanced construction method that can improve bearing capacity.

A Study on the Generating Characteristics Depending on Driving System of a Honeycomb Shaped Piezoelectric Energy Harvester (벌집형 압전 발전 소자의 구동방식에 따른 출력 특성)

  • Jeong, Seong-Su;Kang, Shin-Chul;Park, Tae-Gone
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.28 no.2
    • /
    • pp.69-74
    • /
    • 2015
  • Recently, energy harvesting technology is increasing due to the fossil fuel shortages. Energy harvesting is generating electrical energy from wasted energies as sunlight, wind, waves, pressure, and vibration etc. Energy harvesting is one of the alternatives of fossil fuel. One of the energy harvesting technologies, the piezoelectric energy harvesting has been actively studied. Piezoelectric generating uses a positive piezoelectric effect which produces electrical energy when mechanical vibration is applied to the piezoelectric device. Piezoelectric energy harvesting has an advantage in that it is relatively not affected by weather, area and place. Also, stable and sustainable energy generation is possible. However, the output power is relatively low, so in this paper, newly designed honeycomb shaped piezoelectric energy harvesting device for increasing a generating efficiency. The output characteristics of the piezoelectric harvesting device were analyzed according to the change of parameters by using the finite element method analysis program. One model which has high output voltage was selected and a prototype of the honeycomb shaped piezoelectric harvesting device was fabricated. Experimental results from the fabricated device were compared to the analyzed results. After the AC-DC converting, the power of one honeycomb shaped piezoelectric energy harvesting device was measured 2.3[mW] at road resistance 5.1[$K{\Omega}$]. And output power was increased the number of harvesting device when piezoelectric energy harvesting device were connected in series and parallel.

Study on the Conjugate Heat Transfer Analysis Methodology of Thermal Barrier Coating on the Internal Cooled Nozzle (내부냉각노즐의 열차폐코팅을 위한 복합열전달 해석기법 연구)

  • Kim, Inkyom;Kim, Jinuk;Rhee, Dong-Ho;Cho, Jinsoo
    • The KSFM Journal of Fluid Machinery
    • /
    • v.18 no.3
    • /
    • pp.38-45
    • /
    • 2015
  • In this study, two computational methodologies were compared to consider an effective conjugate heat transfer analysis technique for the cooled vane with thermal barrier coating. The first one is the physical modeling method of the TBC layer on the vane surface, which means solid volume of the TBC on the vane surface. The second one is the numerical modeling method of the TBC layer by putting the heat resistance interface condition on the surface between the fluid and solid domains, which means no physical layer on the vane surface. For those two methodologies, conjugate heat transfer analyses were conducted for the cooled vane with TBC layer having various thickness from 0.1 mm to 0.3 mm. Static pressure distributions for two cases show quite similar patterns in the overall region while the physical modeling shows quite a little difference around the throat area. Thermal analyses indicated that the metal temperature distributions are quite similar for both methods. The results show that the numerical modeling method can reduce the computational resources significantly and is quite suitable method to evaluate the overall performance of TBC even though it does not reflect the exact geometry and flow field characteristics on the vane surface.

Preparation of Thin Film Electrolyte for Solid Oxide Fuel Cell by Sol-Gel Method and Its Gas Permeability (졸-겔법을 이용한 고체산화물연료전지의 전해질 박막 제조 및 가스 투과도)

  • Son, Hui-Jeong;Lee, Hye-Jong;Lim, Tak-Hyoung;Song, Rak-Hyun;Peck, Dong-Hyun;Shin, Dong-Ryul;Hyun, Sang-Hoon;Kilner, John
    • Journal of the Korean Ceramic Society
    • /
    • v.42 no.12 s.283
    • /
    • pp.827-832
    • /
    • 2005
  • In this study, thin electrolyte layer was prepared by 8YSZ ($8mol\%$ Yttria-Stabilized Zirconia) slurry dip and sol coating onto the porous anode support in order to reduce ohmic resistance. 8YSZ polymeric sol was prepared from inorganic salt of nitrate and XRF results of xerogel powder exhibited similar results $(99.2\pm1wt\%)$ compared with standard sample (TZ-8YS, Tosoh Co.). The dense and thin YSZ film with $1{\mu}m$ thickness was synthesized by coating of 0.7M YSZ sol followed by heat-treatment at $600^{\circ}C$ for 1 h. Thin film electrolyte sintered at $1400^{\circ}C$ showed no gas leakage at the differential pressure condition of 3 atm.

Synthesis and Characterization of Photosensitive Polyimides Containing Alicyclic Structure (지방족고리 구조를 함유하는 감광성 폴리이미드 수지의 합성 및 특성 평가)

  • 심종천;최성묵;심현보;권수한;이미혜
    • Polymer(Korea)
    • /
    • v.28 no.6
    • /
    • pp.494-501
    • /
    • 2004
  • A new alkali developable photosensitive poly(amic acid) (PAA-0) with transmittance at 400 nm was synthesized from cyclobutane-1,2,3,4-tetracarboxylic dianhydride, 2-(methacryloyloxy)ethyl-3,5-diamino-benzoate and 1,3-bis(3-aminopropyl)-1,1,3,3-tetramethyl disiloxane in N-methyl-2-pyrrolidinone. Photosensitivity of the PAA-0 was investigated at 365-400 nm in the presence of a photoinitiator using a high pressure mercury lamp. The photo-cured poly(amic acid) was insoluble toward aqueous 2.38 wt% tetramethylammonium hydroxide solution. Negative pattern of the PAA-0 with 25 ${\mu}{\textrm}{m}$ resolution was obtained by developing with 2.38 wt% tetramethylammonium hydroxide solution after exposure of 600 mJ/$\textrm{cm}^2$ in the presence of 2,2-dimethoxy-2-phenyl-acetophenone as a photoinitiator. The patterned poly(amic acid) was converted to polyimide by thermal curing at 25$0^{\circ}C$ for 50 min, which showed chemical resistance against photoresist stripper as well as good transmittance at 400 nm.