• Title/Summary/Keyword: Pressure measurement

Search Result 3,182, Processing Time 0.032 seconds

Accuracy of blood pressure measurements taken using a blood pressure simulator by paramedic students (응급구조(학)과 학생의 혈압측정 모형을 활용한 혈압측정 정확도)

  • Choi, Eun-Sook
    • The Korean Journal of Emergency Medical Services
    • /
    • v.19 no.1
    • /
    • pp.7-17
    • /
    • 2015
  • Purpose: We gathered information for the development of a blood pressure measurement education program by analyzing the accuracy of reading taken using a blood pressure simulator by Korean paramedic students. Methods: Data from 131 students were collected in November 12-20, 2013, and April 2-4, 2014. A 27-item questionnaire was administered, the accuracy of measurements confirmed using a blood pressure simulator (BT-CEAB), and the data analyzed (SPSS v 21.0). Results: The accuracy of systolic and diastolic blood pressure readings (${\leq}2mmHg$) was relatively low (27.5%). The mean blood pressure knowledge score was 67.61 points; significant differences were noted considering the sex (p = .001), hours of practice (p =.007), numbers of practice (p = .001), and reported self-confidence (p = .026). The blood pressure measurement accuracy group did not show a significant difference in its knowledge of blood pressure (p = .198). Conclusion: Most subjects needed several practice sessions to master the skill of measuring blood pressure. The feedback provided by individual assessment and the practice education program will serve as the basis for clinical and prehospital practice.

Validity and Reliability Assessment of the Performance Measures Based on the Nursing Process for Prevention and Management of Pressure Ulcers, Falls and Pain (간호과정 적용 평가도구의 타당도 및 신뢰도 조사 - 욕창, 낙상예방 및 통증 간호를 중심으로 -)

  • Kim, Keum Soon;Kim, Jin A;Choi, Yun Kyoung;Kim, Yu Jeong;Song, Mal Soon;Kim, Eul Soon
    • Journal of Korean Clinical Nursing Research
    • /
    • v.16 no.3
    • /
    • pp.5-23
    • /
    • 2010
  • Purpose: This study was conducted to determine the validity and reliability of performance measurement tools based on the nursing process for prevention and management of pressure ulcers, falls and pain. Methods: The performance measurement tools were reviewed by a panel of experts and refined on the basis of the panel's suggestions. The validity of the performance measurement tools was measured by surveying hospital nurses. The reliability of these tools was tested by having nursing experts use the tools in five nursing units to assess nursing performance in prevention and management of pressure ulcers, falls and pain. Results: The performance measurement tools in this study were found to be acceptable as tools to evaluate quality of nursing care in pressure ulcers, falls and pain. The reliability of the performance measurement tools was acceptable. Conclusion: These results indicate that the performance measurement tools developed in this study are valid and reliable instruments to monitor and improve quality of nursing care in prevention and management of pressure ulcers, falls and pain.

Measurement of Blood Flow Variation using Impedance Method (임피던스법을 이용한 혈류량 변화 측정)

  • Jeong Do-Un;Kang Seong-Chul;Jeon Gye-Rock
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2006.05a
    • /
    • pp.693-696
    • /
    • 2006
  • In this study, we made the system to measure variation of blood flow using bio-electrical impedance analysis method. The system, which could measure variation of impedance according to pressure change by artificial pressure, consists of pressure measurement and impedance measurement by 4-electrode method. Pressure measurement splits into semiconducting pressure sensor and electronic circuit for processing output signal. In addition, impedance measurement splits into constant current source circuit and lock-in amplifier for detection impedance signal. We experimented feature of impedance measurement using standard resistance to evaluate the system characteristic. As well as, we experimented to estimate variation of blood flow by measuring impedance and blood flow resistance ratio using mean arterial pressure and variation of blood flow with experimental group. As result of this study, blood flow resistance ratio and variation of blood flow were definitely in inverse proportion and were -0.96776 as correlation coefficient by correlation analysis.

  • PDF

A Study on the Measurement of Delivery Flow Ripple Generated by Hydraulic Axial Piston Pumps (유압용 액셜 피스톤 펌프의 유량맥동 계측에 관한 연구)

  • 이상기
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.8 no.2
    • /
    • pp.35-43
    • /
    • 1999
  • The paper describes an approach for measuring delivery flow ripple generated by oil hydraulic axial piston pumps. In order to reduce pressure ripple which cause to undesirable noise. vibration and fatigue in hydraulic systems it is indispensible measure a delivery flow ripple from pumps. Since the flow ripple measurement of flow pumps is independent of the dynamic characteristics of the connected hydraulic circuit the measurement of flow ripple is most suitable for pump fluid-borne noise rating. The measurement of flow ripple with high frequencies from axial piston pumps is made by applying the remote instantaneous flow rate measurement method which is based on the dynamic characteristics between pressure and flow rate in hydraulic pipeline. The measured flow ripple waveforms are influenced by the configuration of V-shaped triangular relief groove in the valve plate. It can be seen that the appropriate relief groove in valve plate reduces the pressure and flow ripple amplitude and frequency spectrum for high harmonics.

  • PDF

Assessment on shock pressure acquisition from underwater explosion using uncertainty of measurement

  • Moon, Seok-Jun;Kwon, Jeong-Il;Park, Jin-Woo;Chung, Jung-Hoon
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.9 no.6
    • /
    • pp.589-597
    • /
    • 2017
  • This study aims to verify experimentally the specifications of the data acquisition system required for the precise measurement of signals in an underwater explosion (UNDEX) experiment. The three data acquisition systems with different specifications are applied to compare their precision relatively on maximum shock pressures from UNDEX. In addition, a method of assessing the acquired signals is suggested by introducing the concept of measurement uncertainty. The underwater explosion experiments are repeated five times under same conditions, and assessment is conducted on maximum quantities acquired from underwater pressure sensors. It is confirmed that the concept of measurement uncertainty is very useful method in accrediting the measurement results of UNDEX experiments.

Development of Measurement Systems of Foot Pressure Distribution for Sensory-Feedback type FES System(SEFES) (감각귀환형 기능적 전기자극 시스템(SEFES)을 위한 발압력 분포 계측시스템의 개발)

  • Kim, J.M.;Kim, Y.Y.;Yang, K.M.;Ko, S.B.;Jeong, D.M.
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1994 no.05
    • /
    • pp.88-91
    • /
    • 1994
  • We develope a assistant system of foot pressure distribution for improvement gait Pattern, adapted working speed, and minimitation of muscle fatigue of the sensory feedback type FES system(SEFES). This measurement system consist of mat type pressure sensor with piezo electric films. The pressure data signal multiflexed input scanning method processed A/D conversion after two step amplify and integrate. Matrix sensor interface to PC for pseudo color display by level of Pressure distribution data. This measurement system clinically evaluated in hemiplegic patients. It has produced acceptable results with optimal location of the food sensor's pressure point and avoid the muscle fatigue.

  • PDF

A Experimental Study on the Formal and Physiological Change of Body according to the Wearing-Brassiere Condition. (Brassiere 착용조건에 따른 신체의 형태적, 생리적 변화에 관한 심리적 연구)

  • 박영득
    • Journal of the Korean Home Economics Association
    • /
    • v.29 no.1
    • /
    • pp.27-35
    • /
    • 1991
  • This study was carried out to investigate the influence of the various physiological function caused by brassiere wearing. The four experimental methods used in this study are as follows. For example, the Roentgen photographing, Body measurement by Sliding Gauge, the measurement of the Electrocardiogram and Blood Pressure. The results of the Electrocardiogram and Blood Pressure. The results of the investigation were as follows: 1. In experimental change by Sliding Gauge and Body measurement, The bust point was rised in order AB1>B2. The width of right and left bust point was decreased in order of A>B1>B2. According to, The supplementary effect of brassiere wearing was excellent in B2. 2. In the change of various organs by Roentgen photographing, The width of the chest and size of the heart were decreased in regular order of A>B1>B2. The diaphragm and the others were not showed change. 3. In the experimental result by measurement of the electrocardiogram, The interval of heart palpitation was decreased in order A>B1>B2 and the pulse frequency was similar. 4. In the experimental result by the blood pressure measurement, A had the highest blood pressure and B2 had the lowest pressure in all variables.

  • PDF

Telemetry capsule for pressure monitoring in the gastrointestinal tract (소화관 내 압력 측정을 위한 텔레메트리 캡슐 구현)

  • Yoon, Ki-Won;Woo, Sang-Hyo;Lee, Jyung-Hyun;Moon, Yeon-Kwan;Park, Hee-Joon;Won, Chul-Ho;Kim, Byung-Kyu;Choi, Hyun-Chul;Cho, Jin-Ho
    • Journal of Sensor Science and Technology
    • /
    • v.14 no.4
    • /
    • pp.211-218
    • /
    • 2005
  • As the cause and the treatment about gastrointestinal disease has been issued recently, the importance of measuring the pressure in the gastrointestinal tract has been increased. However, the conventional measurement methods of the pressure in the gastrointestinal tract cause the patients' pain and inconvenience as well as an inaccurate pressure measurement. In this paper, the pressure monitoring telemetry system has been designed and implemented for an accurate pressure measurement inside the gastrointestinal tract with minimizing pain and inconvenience. The pressure monitoring telemetry system is composed of a pressure measurement capsule and an external receiver. The capsule has been miniaturized into the same size of a vitamin tablet so that the capsule can be swallowed through the oral cavity. After the capsule acquires and encodes the pressure data in the gastrointestinal tract, the encoded pressure data are modulated by frequency shift keying (FSK) and transmitted with ultrahigh frequency (UHF) band signal to the outside of a body. The performance of the telemetry capsule for monitoring pressure in the gastrointestinal tract is demonstrated by the results of animal in-vivo experiments.

Analysis of Blood pressure influence factor Correction for Photoplethysmography Fusion Algorithm Calibration (광전용적맥파 융합 알고리즘 보정을 위한 혈압 영향인자 상관관계 분석)

  • Kim, Seon-Chil
    • Journal of the Korea Convergence Society
    • /
    • v.10 no.2
    • /
    • pp.67-73
    • /
    • 2019
  • The blood pressure measurement is calculated as a value corresponding to the pressure of the blood vessel using the pressure from the outside for a long time. Due to the recent miniaturization of measurement equipment and the ICT combination of personal healthcare systems, a system that enables continuous and real-time measurement of blood pressure with a sensor is required. In this study, blood pressure was measured using pulse transit time using Photoplethysmography. In this study, blood pressure was estimated by using systolic blood pressure. And it is possible to make measurement only with PPG itself, which can contribute to making a micro blood pressure measuring device. As a result, systolic blood pressure and PPG's S1-P and P-S2 were used to analyze the possibility of blood pressure estimation.

Systolic blood pressure measurement algorithm with mmWave radar sensor

  • Shi, JingYao;Lee, KangYoon
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.4
    • /
    • pp.1209-1223
    • /
    • 2022
  • Blood pressure is one of the key physiological parameters for determining human health, and can prove whether human cardiovascular function is healthy or not. In general, what we call blood pressure refers to arterial blood pressure. Blood pressure fluctuates greatly and, due to the influence of various factors, even varies with each heartbeat. Therefore, achievement of continuous blood pressure measurement is particularly important for more accurate diagnosis. It is difficult to achieve long-term continuous blood pressure monitoring with traditional measurement methods due to the continuous wear of measuring instruments. On the other hand, radar technology is not easily affected by environmental factors and is capable of strong penetration. In this study, by using machine learning, tried to develop a linear blood pressure prediction model using data from a public database. The radar sensor evaluates the measured object, obtains the pulse waveform data, calculates the pulse transmission time, and obtains the blood pressure data through linear model regression analysis. Confirm its availability to facilitate follow-up research, such as integrating other sensors, collecting temperature, heartbeat, respiratory pulse and other data, and seeking medical treatment in time in case of abnormalities.