• Title/Summary/Keyword: Pressure filtration

Search Result 356, Processing Time 0.031 seconds

A Study on the Development of Dust Collection System for Hull Repair (선체 표면 공사시 발생하는 분진 수거 장치 개발에 관한 연구)

  • Yoa, S.J.
    • Journal of Power System Engineering
    • /
    • v.8 no.2
    • /
    • pp.31-38
    • /
    • 2004
  • The main purpose of this study is to investigate the characteristics of hybrid collection system combined with centrifugal force of cyclone and filtration of bag filter in one unit system. The experiment and numerical simulation are executed for the analysis of collection efficiency and pressure drop characteristics of hybrid system in comparison with those of a general fabric bag filter with the various experimental parameters such as inlet velocity(filtration velocity), dust concentration and dust type, etc.. In present system, dust particles tangentially coming into the system body are controlled by the centrifugal force effect, and the next collection is made out by the filtration mechanism in the fabric filter media. Therefore, the effective first collection causes the decrease of dust loading on the fabric filter, and it presents quite a lower pressure drop of fabric filter than that of a general fabric filter. At the inlet velocity, $21{\sim}27m/sec$ and inlet concentration(fly ash) $300mg/m^3$, pressure drops through the filter media of hybrid system are shown lower as $10{\sim}22mmH_2O$ comparing to those($17{\sim}33mmH_2O$) of a general fabric bag filter.

  • PDF

Characterization of depth filter media for gas turbine intake air cleaning

  • Park, Young Ok;Hasolli, Naim;Choi, Ho Kyung;Rhee, Young Woo
    • Particle and aerosol research
    • /
    • v.5 no.4
    • /
    • pp.159-170
    • /
    • 2009
  • A depth filter medium was newly designed in order to achieve high collection of dust and low pressure drop in this work. Multilayer depth filter media consist of an upstream layer of highly porous structure which allows particles to pass through and to follow by one or more downstream layers to hold the particles inside the media. For each filter media, flat sheet and pleated module were made of newly developed depth filter media and filter media of commercial products. Commercial depth filter cartridge for gas turbine air intake cleaning were used as reference for filtration area and pleat geometry of pleated modules. This work attempts to evaluate and compare the newly developed depth filter medium and two commercial filter media in terms of filtration parameters such as air permeability, initial pressure drop, particle retention and pressure drop variation with dust loading. According to the close examination the newly developed depth filter showed better performance compared to the commercial depth filter media.

  • PDF

Performance Evaluation of an Automotive Fuel Filter by Multi-Pass Filtration Test (다순환 여과시험에 의한 자동차용 연료필터의 성능 평가)

  • 이재천;장지현
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.10 no.6
    • /
    • pp.219-226
    • /
    • 2002
  • Filtration performance of an automotive fuel filter was evaluated based on the theory of Beta ratio. This study also introduced the fuel components' contamination performance test stand incorporating the multi-pass filtration test circuit. The theoretical basis of multi-pass test and test procedure were described in detail. The specification of commercial fuel filter currently available was just the maximum pressure drop across the filter assembly and the holding capacity of contaminants. However, test results revealed that the fuel filter tested could not maintain consistent Beta ratio, that is filtration efficiency, although it had the holding capacity close to the specification. Hence the Beta ratio should be specified in service life. The results also showed that filtration system model should be refined including desorption ratio to estimate the variable Beta ratio in the test.

The Effect of Chemical Backwash on Filtration Performance of Batch Membrane Filtration System (회분식 막여과 시스템에서 약품역세가 여과성능에 미치는 영향)

  • Kim, Kwan Yeop;Lee, Eui Jong;Kwon, Jin Sub;Kim, Hyung Soo
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.23 no.6
    • /
    • pp.855-864
    • /
    • 2009
  • The main object of this work was to determine the influence of periodic chemical backwash on filtration resistance in membrane filtration system. In this work Hermia's models were used to investigate the fouling mechanisms involved in the microfiltration of $0.45{\mu}m$ filtered sewage feed. Batch microfiltration experiments were performed at transmembrane pressure 0.4 bar and different feed SCOD concentration (9~67 mgSCOD/L). The results showed that the best fit to experimental data corresponded to the intermediate blocking model followed by the standard and complete blocking model for all the experimental conditions tested. From the simulation results of filtration performance, it was found that in order to maintain sustainable operation of membrane filtration system, irreversible foulant component accumulated continuously on membrane surface and/or pore must be effectively removed. In addition, it was verified that periodic chemical backwash using NaOCl or NaOH effectively improved filtration performance of membrane.

Analysis of Membrane Fouling Reduction by Natural Convection Instability Flow in Membrane Filtration of Colloidal Solution: Application of Blocking Filtration Model (콜로이드 용액의 막여과에서 자연대류 불안정 흐름의 막오염 저감 효과 해석: 막힘여과 모델의 적용)

  • Kim, Ye-Ji;Youm, Kyung-Ho
    • Membrane Journal
    • /
    • v.29 no.6
    • /
    • pp.329-338
    • /
    • 2019
  • The constant-pressure and constant-flux membrane filtration experiments of alumina colloidal solution are performed to investigate defouling effect of the natural convection instability flow (NCIF) induced in membrane module. The permeate flux at constant-pressure and the transmembrane pressure (TMP) at constant-flux experiments are measured by changes the inclined angle (0, 90 and 180°) of membrane module to the gravity, and flux results are analyzed by using the blocking filtration model. NCIF are more induced as the inclined angles increased from 0° to 180°, and the maximum induced NCIF at 180° angle enhances flux to 2.8 times and reduces TMP to 85% after two-hour operation. As a result of analyzing flux data by applying the blocking filtration model, it is more reasonable to analyze them by using the intermediate blocking model within 15-minute operation time and then thereafter times by using the cake filtration model. The induced NCIF at 180° angle reduces the intermediate blocking fouling at 52% in the early operation time of 15-minute and thereafter the cake layer fouling at 93%. The main membrane fouling control mechanism of NCIF induced in membrane module is evaluated as suppressing the formation of the cake layer of particulate colloidal materials on membrane surface.

Purification During Crossflow Electromicrofiltration of Fermentation Broth

  • Park Young G.
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.9 no.6
    • /
    • pp.500-505
    • /
    • 2004
  • The present study was to investigate the purification of a fermentation broth by an electromicrofiltration membrane. Microfiltration runs with a crude and a centrifuged broth, with solution of particles recovered from centrifugation and with permeates from microfiltration experiments were thus compared. Microfiltration performances were governed by colloids and small particles that induced sharp initial flux declines. For these results, the evolution of the overall membrane resistance was increased by $80\%$ in comparison with the electromicrofiltration membrane. The main focus of this study was set on the enhancement of the filtrate flux by an electric field. This pressure electrofiltration leads to a drastic improvement of the filtration by $100\%$ and the filtration time was thereby reduced. Pressure electrofiltration serves as an inter­esting alternative to the cross-flow filtration and it effectively separates advantageous constitu­ents such as amino acids and biopolymers from a fermentation broth. They were equally main­tained during the microelectrofiltration, although they were significantly reduced by $45\%$ by the microfiltration without the application of an electric field. Accordingly, since the electrofiltration membrane was provided more permeability, this study experimentally demonstrates that the permeability inside a membrane can be controlled using an electric field.

A Study on the High Temperature Filtration Performance Test of Low Density Ceramic Filters (저밀도 세라믹 필터의 고온 여과 성능시험에 관한 연구)

  • 이동섭;홍민선;최종인
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.17 no.1
    • /
    • pp.75-84
    • /
    • 2001
  • Hot gas filtration method via using ceramic filters is an evolving technology applicable to numerous industrial and air pollution control processes. Alumino silicate, organic and inorganic binders were the major raw materials in manufacturing ceramic filters. In this work, disc type ceramic filters(50$\phi$$\times$10t) were manufactured by vacuum forming processes using ceramic raw materials. The porosity and bulk density of disc type ceramic filers ranged from 86 to 89% and from 0.27 to 0.36 g/㎤, respectively. In this work disc type ceramic medium were tested utilizing coupon experimental apparatus. Disc type filters showed high collection efficiencies over 99.96% with Darchs law coefficients of 4.1$\times$10(sup)10~9.63$\times$10(sup)10/$m^2$ depending on mean pore sizes. In addition, filtration and detachment of ceramic filters turned out to be performed effectively using 10 cm/sec face velocity, 5 minutes filtration cycle, 100msec pulse jet valve opening time and 3 bar pulsing pressure.

  • PDF

A Study on the Reverse Cleaning Flow Characteristics for High Temperature and High Pressure Filtration (고온 고압 집진을 위한 역세정 유동장의 특성에 관한 연구)

  • 김장우;정진도;김은권
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.19 no.1
    • /
    • pp.25-31
    • /
    • 2003
  • Ceramic filter has been demonstrated as an attractive system to improve the thermal efficiency and to reduce the effluent pollutants. Removal of particulates from the hot gas stream is very important in air pollution control. In particular, the elimination of the particulate matters discharged from a gas turbine at high temperature can prevent the corrosion inside the IGCC. In this study, a Lab. scale test and numerical simulation were carried out to comprehend the relationship between pulse jet pressure and recovery of pressure drop and to characterize the reverse cleaning flow through a ceramic fil-ter element under high temperature and high pressure. When the pulse-jet pressures were 2, 3 and 4 kg/$ extrm{cm}^2$, the cleaning effect increase of about 10~30% by recovery of pressure drop caused by pulse pressure. Cleaning effect at 45$0^{\circ}C$ was greater than that at 55$0^{\circ}C$ or 650$^{\circ}$ for the same pulse pressure. According to the result of the present simulation, high pressure has been formed in terminal and central regions in our models and temperature distribution caused by pulse air is to be uniform comparatively on inner surface of filter.

The Prediction of Optimal Pulse Pressure Drop by Empirical Static Model in a Pulsejet Bag Filter (경험모델을 이용한 충격기류식 여과집진기의 적정 탈진압력 예측)

  • Suh, Jeong-Min;Park, Jeong-Ho;Lim, Woo-Taik;Kang, Jum-Soon;Cho, Jae-Hwan
    • Journal of Environmental Science International
    • /
    • v.21 no.5
    • /
    • pp.613-622
    • /
    • 2012
  • A pilot-scale pulse-jet bagfilter was designed, built and tested for the effects of four operating conditions (filtration velocity, inlet dust concentration, pulse pressure, and pulse interval time) on the total system pressure drop, using coke dust from a steel mill factory. Two models were used to predict the total pressure drop according to the operating conditions. These model parameters were estimated from the 180 experimental data points. The empirical model (EM) with filtration velocity, areal density, inlet dust concentration, pulse interval time and pulse pressure shows the best correlation coefficient (R=0.971) between experimental data and model predictions. The empirical model was used as it showed higher correlation coefficient (R=0.971) compared to that of the Multivariate linear regression(MLR) (R=0.961). The minimum pulse pressure predicted by empirical model (EM) was 5kg/$cm^2$.

Permeation Behavior of Microfiltration Membrane by Alumina Colloidal Suspension under a Cyclic Variation in TMP (운전압력의 순환변화에 따른 알루미나 현탁액의 정밀여과 투과거동)

  • Nam, Suk-Tae;Han, Myeong-Jin
    • Membrane Journal
    • /
    • v.21 no.1
    • /
    • pp.13-21
    • /
    • 2011
  • This study investigated the fouling behavior of $Al_2O_3$ colloids on polyethylene microfiltration membrane. To examine the effect of operation variation on fouling, operating pressure was increased from 0.49 to 1.96 bar along with time elapses and then was reduced to 0.49 bar reversely. A hysteresis behavior was observed in the membrane permeate flux over pressure, revealing different fluxes at the same pressure according to the pressure control type, increasing and decreasing. Permeate resistance and its rate of increase was higher in the decreasing pressure cycle than in the increasing pressure cycle. At the initial period of filtration, fouling mechanism for the both cycles was governed by the cake filtration. The degree of fouling was higher in the decreasing pressure cycle compared with in the increasing pressure cycle.