• Title/Summary/Keyword: Pressure feedback control

Search Result 198, Processing Time 0.024 seconds

Control Strategy of Ratio Changing System for a Metal V-Belt CVT Adopting Primary Pressure Regulation (압력제어 방식 금속 벨트 CVT 변속비 제어 전략)

  • 최득환;김현수
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.10 no.3
    • /
    • pp.201-208
    • /
    • 2002
  • In this paper, the control strategy of ratio changing system for a metal belt CVT adopting primary pressure regulation is developed, and the shirting performance of pressure regulating type CVT with the suggested control strategy is investigated. The control strategy suggested in this study is composed of 2 feedback loop, one is speed ratio feedback and the other is primary pressure feedback. The pressure feedback is adopted to ensure prohibiting a belt slip during transient period in a fast downshift mode. Simulation results show that the system with suggested control strategy gives appropriate response time and tracking Performance for upshift and also gives a proper primary pressure which can prohibit the belt slip. In addition, it is fecund that the given system has an acceptable servo property in tracking the target speed ratio and robustness for the disturbance of line pressure.

Robust Control of Pressure Control System Using Direct Drive Valve (DDV를 이용한 압력 제어시스템의 강인제어)

  • Lee Chang-Don;Park Sung-Hwan;Lee Jin-Kul
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.11 no.12
    • /
    • pp.1077-1082
    • /
    • 2005
  • In this paper, it is proposed that the method for constituting pressure control system controlled by Direct Drive Valve (DDV). The DDV has a pressure-feedback-loop itself. It can eliminate non-linearity and uncertainty oi hydraulic system such as uncertain discharge coefficient and change of bulk-modulus. However, the internal feedback-loop can not compensate them perfectly. And fixed gain of the DDV's internal feedback-loop is not proper to apply it through wide pressure range. The steady state error and nonlinear characteristic of transient behaviour is observed in the experiment. So another controller is needed for the desirable performance of the system. To compose the controller, the pressure control system controlled by DDV is modeled mathematically and the parameters of the model are identified using signal-compression method. Then sliding mode controller is designed based on mathematical model. Desirable performance of the pressure control system controlled by DDV is obtained.

Implement of Blood Pressure Simulator Using Proportional Control Valve and Hybrid Controller (비례제어밸브와 혼합제어기를 이용한 혈압 시뮬레이터의 구현)

  • Lee K. W.;Kim C. H.;Han K. B.;Kim H. J.;Jeon G. R.
    • Proceedings of the Korea Society for Simulation Conference
    • /
    • 2005.05a
    • /
    • pp.149-153
    • /
    • 2005
  • In the cardiovascular system, the waveform of the pulsatory blood pressure appears variously due to the cardiac impulse and compliance of blood vessels and arm tissue. We have constructed a blood pressure simulator to investigate effects of mechanical properties of artery walls and tissue on blood pressure measurements. The blood pressure simulator is designed to reproduce wave forms of blood pressure in human arteries. To minimize tracking error, we use a linear control valve, and adapt a hybrid control scheme which consists of a feedback controller and a feedforward controller. Any form of the pressure wave can be reproduced, changing function of the wave form in the computer connected to the simulator for control. From experiments, it has been shown that the simulator reproduces wave forms very well, and that the hybrid scheme adapted is superior to the feedback controller.

  • PDF

Transient Response Analysis of a Control Valve for CO2 Refrigerant (CO2냉매용 제어밸브의 응답 특성)

  • Kim, Bo Hyun;Jang, Ji Seong
    • Journal of Drive and Control
    • /
    • v.15 no.4
    • /
    • pp.11-16
    • /
    • 2018
  • Pilot operated control valve for $CO_2$ refrigerant is a valve that can perform various functions according to the user's intention by replacing pilot units, widely used for flow rate, pressure, and temperature control of refrigeration and air conditioning systems. In addition, $CO_2$ refrigerant, that requires high pressure and low critical temperature, can be installed and used in all positions of the refrigeration system, regardless of high or low pressure. In this paper, response characteristics are modeled and analyzed based on behavior of the main piston of the pilot-operated control valve. Although various factors influence operation of the main piston, this paper analyzes the effect of equilibrium pressure depending on valve installation position and application, and inlet and outlet orifice size of the load pressure feedback chamber to determine feedback characteristics of the main piston. As a result, it was possible to quantitatively analyze the effect of change in equilibrium and load pressure feedback chamber flow path size on the change in main piston dynamic and static characteristics.

Observer Based Nonlinear State Feedback Control of PEM Fuel Cell Systems

  • Kim, Eung-Seok
    • Journal of Electrical Engineering and Technology
    • /
    • v.7 no.6
    • /
    • pp.891-897
    • /
    • 2012
  • In this paper, the observer based nonlinear state feedback controller has been developed to control the pressures of the oxygen and the hydrogen in the PEM(Proton Exchange Membrane) fuel cell system. Nonlinear model of the PEM fuel cell system was introduced to study the design problems of the state observer and model based controller. A cascade observer using the filtering technique was used to estimate the pressure derivatives of the cathode and the anode in the system. In order to estimate the pressures of the cathode and the anode, the sliding mode observer was designed by using these pressure derivatives. To estimate the oxygen pressure and the hydrogen pressure in the system, the nonlinear state observer was designed by using the cathode pressure estimates and the anode it. These results will be very useful to design the state feedback controller. The validity of the proposed observers and the controller has been investigated by using the Lyapunov's stability analysis strategy.

Effect of Self-Postural Control with Visual Feedback in the Foot Pressures in the Subject with Forward Head Posture

  • Kim, Ju-Sang;Choi, Jin-Ho;Lee, Mi-Young
    • The Journal of Korean Physical Therapy
    • /
    • v.29 no.4
    • /
    • pp.153-157
    • /
    • 2017
  • Purpose: The purpose of this study was to investigate the effect of self-postural control on foot pressure in subjects with forward head posture. Methods: Forty-two healthy adults were recruited in this study. Participants were divided into two groups: The forward-head postural (FHP) group (craniovertebral angle<$53^{\circ}$, n=22) and the control group (craniovertebral angle${\geq}53^{\circ}$, n=20). In the FHP group, foot pressure was measured using three different standing postures: Comfortable standing posture (CSP), subjective neutral standing posture (SNSP), and neutral standing posture with visual feedback (NSP-VP). Each position was performed in random order. In the control group, foot pressure was measured only using the comfortable standing posture. Results: With respect to CSP and SNSP, there was a significant difference on heel pressure between the two groups (p<0.05). Regarding NSP-VP, however, there was no significant differences on heel pressure between the two groups (p>0.05). Conclusion: We suggest that cervical posture control using visual feedback has a positive effect on the distribution of foot pressure in subjects with forward head posture.

A Study on the Improvement of the Response Characteristic of the Electro-Hydraulic Rear Wheel Steering Gear (전자 유압식 후륜 조향 장치의 응답 특성 개선에 관한 연구)

  • 오인호;양경욱;이일영
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.5 no.6
    • /
    • pp.192-201
    • /
    • 1997
  • The feedback control scheme of the pressure control system of the rear wheel steering gear which has relatively large volume and sprung load was built up in order to improve th response characteristic of the system. The control algorithm chosen was a feedback compensator joined by a feedfoward compensator and the model matching method was used in the process of control system design. The structures and properties of the reference models were inspected and the parameters of the controller were decided. The improvement of the response characteristic of the pressure control valve by means of the feedback control is affirmed. Particularly, when the order of the system model is higher than the 2nd order, the effectiveness of the feedback control on the improvement of the response characteristic of the valve is distinct. And the convenience of the model matching method is the process of control system design is confirmed as well.

  • PDF

Common Rail Pressure Control Algorithm for Passenger Car Diesel Engines Using Quantitative Feedback Theory (QFT를 이용한 디젤엔진의 커먼레일 압력 제어알고리즘 설계 연구)

  • Shin, Jaewook;Hong, Seungwoo;Park, Inseok;Sunwoo, Myoungho
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.38 no.2
    • /
    • pp.107-114
    • /
    • 2014
  • This paper proposes a common rail pressure control algorithm for passenger car diesel engines. For handling the parameter-varying characteristics of common rail systems, the quantitative feedback theory (QFT) is applied to the design of a robust rail pressure control algorithm. The driving current of the pressure control valve and the common rail pressure are used as the input/output variables for the common rail system model. The model parameter uncertainty ranges are identified through experiments. Rail pressure controller requirements in terms of tracking performance, robust stability, and disturbance rejection are defined on a Nichols chart, and these requirements are fulfilled by designing a compensator and a prefilter in the QFT framework. The proposed common rail pressure control algorithm is validated through engine experiments. The experimental results show that the proposed rail pressure controller has a good degree of consistency under various operating conditions, and it successfully satisfies the requirements for reference tracking and disturbance rejection.

Pressure Control of Hydraulic Cylinder using high Speed On-Off Solenoid Valve (고속 온-오프 전자 밸브를 사용한 유압 실린더의 압력 제어)

  • 김상수
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.23 no.1
    • /
    • pp.69-78
    • /
    • 1999
  • In this study a new pattern of pressure control of hydraulic cylinder using high speed On-Off solenoid valve in the electro-hydraulic system has been suggested. The control valve is 3-way high speed On-Off solenoid valve which is operated by PWM(Pulse Width Modulation)control signal. The high speed On-Off solenoid valve has a tendency to induce severe pressure fluctuation in the hydraulic actuator so it has not been used for the purpose of closed loop control with direct pres-sure feedback. In this study closed loop control with direct pressure feedback is enabled by using a digital filter which has linear minimum mean square filter algorithm. Through some experiments it is confirmed that stable pressure control can be realized by the proposed control technique.

  • PDF

Research of Synthetic Resonance Characteristics for Electrohydraulic Thrust Vector Control Actuation System (전기-유압식 추력벡터제어 구동장치시스템의 합성공진 특성 연구)

  • Min, Byeong-Joo;Choi, Hyung-Don;Kang, E-Sok
    • Aerospace Engineering and Technology
    • /
    • v.7 no.1
    • /
    • pp.151-160
    • /
    • 2008
  • In this paper, the analysis results of synthetic resonance characteristics are described for the electrohydraulic thrust vector control actuation system. The synthetic resonance is induced by integration of position servo actuation system on the flexible launch vehicle mounting structure. The new resonance mode is synthesized due to composition of hydraulic resonance for electrohydraulic position servo system with inertia load condition and structural resonance for flexible mounting structure. This synthetic resonance can make stability of control system worse by feedback and amplification of control system. The exact nonlinear analysis model of this phenomenon is developed to predict and design a control algorithm for improvement characteristics. The DPF (Dynamic Pressure Feedback) control algorithm has been designed and has excellent resonance suppression capability.

  • PDF