• Title/Summary/Keyword: Pressure exponent

Search Result 96, Processing Time 0.022 seconds

Prediction of Vapor Pressure of the Inert Gases (비활성 기체의 증기압 예측)

  • Chung, Jaygwan-G.
    • Journal of the Korean Chemical Society
    • /
    • v.47 no.6
    • /
    • pp.541-546
    • /
    • 2003
  • Experimental vapor pressure measurements available in the literature for the inert gases have been rigorously analyzed and used to evaluate the constants A, B, C, D, and exponent of the following equation in the form of reduced vapor pressure and reduced temperature : $InP_r=A+{\frac{B}{T_r}+CInT_r+DT_n^r}$ According to varying exponent n all four constants have been obtained for the inert gases by the error analysis. This has provided us the best n and four constants for each of the inert gases ; Argon, krypton, xenon, helium, and neon. In order to obtain the calculated vapor pressure by the above equation, only the normal boiling point and the critical pressure and critical temperature are necessary to get the vapor pressure for an overall average deviation of 0.31 % for 406 experimental vapor pressure points consisting of five gases available in the literature. The average deviation for argon, krypton, and xenon is 0.24%, 0.09%, and 0.22%, respectively, for neon 1.31% and for helium 0.61%. These results are not unexpected in view of the significant quantum effects associated with helium and to a lesser degree with neon.

Solid Propellants for Propulsion System Including a Yellow Iron Oxide (황색산화철을 포함하는 혼합형 추진제의 특성에 관한 연구)

  • Park, Sungjun;Won, Jongung;Park, Jungho;Park, Euiyong;Choi, Sunghan
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.22 no.3
    • /
    • pp.65-71
    • /
    • 2018
  • There is no significant difference in the initial viscosity of a propellant applied with yellow iron oxide and red iron oxide. In addition, the thermal decomposition rate of the material with added yellow iron oxide is faster than that with the addition of red iron oxide. Specifically, it was confirmed that the pressure exponent was 18% lower at high temperature and high pressure with yellow iron oxide than with red iron oxide. The initial viscosity was lowest at 71% of the large particle to small particle ratio.

Solid Propellants for Propulsion System Including A Yellow Iron Oxide (황색산화철을 포함하는 혼합형 추진제의 특성에 관한 연구)

  • Park, Sungjun;Choi, Sunghan;Won, Jongung;Park, Jungho;Park, Euiyong
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2017.05a
    • /
    • pp.498-503
    • /
    • 2017
  • There is no unusual difference in the initial viscosity of the propellant applied with yellow iron oxide and red iron oxide. In addition, the thermal decomposition rate of the material added with yellow iron oxide is faster than that of the addition of red iron oxide. Especially, it was confirmed that the pressure exponent was 18% lower at high temperature and high pressure. The initial viscosity was lowest at 71% of large particle/small particle ratio

  • PDF

A Study on Combustion Characteristics of the High Pressure Diesel Engine in Closed Cycle System (폐회로 시스템에서 고압 디젤엔진의 연소특성에 관한 연구)

  • 김인교;박신배
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.26 no.4
    • /
    • pp.457-463
    • /
    • 2002
  • The closed cycle diesel engine is used in a closed circuit system which has no air breathing. The working fluid as intake mixture are consisted of oxygen, argon and recirculated exhaust gas in order to obtain underwater or underground power sources. In the present study, the high pressure diesel engine which can be operated by the closed cycle system with high intake pressure for increasing the net power rate is designed. It has been carried out to investigate the combustion characteristics of high pressure diesel engine according to the power rate. The maximum cylinder pressure and heat release rate were investigated. Also, major experimental data such as specific fuel consumption rate, oxygen concentrations, fuel conversion efficiency, polytropic exponent, and IMEP were compared with low pressure diesel engine experimental data.

Determination of J-Resistance Curves of Nuclear Structural Materials by Iteration Method

  • Byun, Thak-Sang;Bong Sang lee;Yoon, Ji-Hyun;Kuk, Il-Hiun;Hong, Jun-Hwa
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1998.05b
    • /
    • pp.336-343
    • /
    • 1998
  • An iteration method has been developed for determining crack growth and fracture resistance cure (J-R curve) from the load versus load-line displacement record only. In this method, the hardening curve, the load versus displacement curve at a given crack length, is assumed to be a power-law function, where the exponent varies with the crack length. The exponent is determined by an iterative calculation method with the assumption that the exponent varies linearly with the load-line displacement. The proposed method was applied to the static J-R tests using compact tension(CT) specimens, a three-point bend (TPB) specimen, and a cracked round bar (CRB) specimen as well as it was applied to the quasi-dynamic J-R tests using CT specimens. The J-R curves determined by the proposed method were compared with those obtained by the conventional testing methodologies. The results showed that the J-R curves could be determined directly by the proposed iteration method with sufficient accuracy in the specimens from SA508, SA533, and SA516 pressure vessel steels and SA312 Type 347 stainless steel.

  • PDF

The ralationship between apex seal breakage and engine detonation in a wankel engine (Wankel 엔진의 에이펙스 시일 파손과 엔진 이상폭발과의 관계)

  • 김승수
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.7 no.1
    • /
    • pp.48-54
    • /
    • 1985
  • One of the most probable reason of the apex seal damage in IR-2500 industrial Wankel (rotary) engine was believed to be the engine detonation. Both analytical and experimental studies were made with a view th find out engine detonation pressure. The stagnation detonation pressure $p_{03}$' was estimated based on the data from IR-2500 engine detonation tests, such as engine firing pressure, state of fresh charge at BDC and polytropic compression exponent. The estimated stagnation detonation pressure for the natural gas fueled IR-2500 engine was in excess of 3,700 psia. With natural gas liquid added to the natural gas the octane value of the fuel was lowered, thus, making the engine more prone to detonate. The estimated detonation pressure for the case with the mixed fuel was about 3,400 psia which was sufficiently high to break the apex seal. The subsequent engine lab tests performed on two identical engines with sole difference in the apex seal thickness between the two engines proved that the engine knock, in fact, was the villain of the apex seal failure.ilure.

  • PDF

Response of Solid-Propellant Combusyion to Prerrure Wave (고체추진제 연소의 압력파에 대한 반응 :)

  • 이형인
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.11
    • /
    • pp.2169-2180
    • /
    • 1992
  • Solid propellant combustion is investigated for its response to several imposed pressure histories. For this purpose, it is assumed that combustion takes place in a premixed gas evaporated from a uniform melt of solid propellant. One-dimensional unsteady problem is than numerically solved for a pressure coupling, with a steady state as an initial state. The results in response to pressure of finite sinusoidal waves show that unsteady mass fluxes are sometimes quite different from those predicted by the classical quasisteady burning law of Vieile. In addition, abnormal mass flux excursions are captured for a large pressure exponent and a lower melting point.

Analysis of Wind Velocity Profile for Calculation of Wind Pressure on Greenhouse (온실의 풍압력 산정을 위한 풍속의 수직분포 분석)

  • Jung, Seung-Hyeon;Lee, Jong-Won;Lee, Si-Young;Lee, Hyun-Woo
    • Journal of Bio-Environment Control
    • /
    • v.24 no.3
    • /
    • pp.135-146
    • /
    • 2015
  • To provide the data necessary to determine the design wind speed for calculating the wind load acting on a greenhouse, we measured the wind speed below 10m height and analyzed the power law exponents at Buan and Gunwi. A wind speed greater than $5m{\cdot}s^{-1}$ is appropriate for calculating the power law exponent necessary to determine the wind speed distribution function according to height. We observed that the wind speed increased according to a power law function with increased height at Buan, showing a similar trend to the RDC and JGHA standards. Therefore, this result should be applied when determining the power law function for calculating the design wind speed of the greenhouse structure. The ordinary trend is that if terrain roughness increases the value of power law exponent also increases, but in the case of Gunwi the value of power law exponent was 0.06, which shows contrary value than that of the ordinary trend. This contrary trend was due to the elevations difference of 2m between tower installed and surrounding area, which cause contraction in streamline. The power law exponent started to decrease at 7 am, stopped decreasing and started to increase at 3 pm, and stopped increasing and remained constant at 12 pm at Buan. These changes correspond to the general change trends of the power law exponent. The calculated value of the shape parameter for Buan was 1.51, confirming that the wind characteristics at Buan, a reclaimed area near the coast, were similar to those of coastal areas in Jeju.

Performance Evaluation of Vapor Pressure Correlations in a Polynomial Expression (다항식 형태의 증기압 상관식의 성능 평가)

  • Park, Kyoung-Kuhn
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.1401-1406
    • /
    • 2003
  • Performance of two vapor pressure correlation equations in a polynomial expression is compared. These are the Wagner-type equation and the Inverted form equation. The equations are fitted to correlate the data in the ASHRAE tables and from NIST Chemistry WebBook for 17 pure substances. Some observations on the exponents in the two polynomial equations are made, which results in a proposal of a new closed form vapor pressure equation. The new equation yields the accuracy comparable to that of the Wagner-type equation and better than that of the Inverted form equation.

  • PDF

A Study on the Measuring about the Coefficient of Earth Pressure at Rest 1 (정지토압계수 측정에 관한 연구 1)

  • 송무효
    • Journal of Ocean Engineering and Technology
    • /
    • v.15 no.4
    • /
    • pp.92-100
    • /
    • 2001
  • It is very important to determine the coefficient of earth pressure at rest accurately in order to estimate the behavior of soil structure. For estimation of K/sub 0/-value depending upon the stress history of dry sand, a new type of K/sub 0/-oedeometer apparatus is devised, and the horizontal earth pressure is accurately measured. For this study, 2 types of one-cyclic K/sub 0/-Loading/unloading models have been studied experimentally using four relative densities of the sand. The results obtained in this test are as follows : K/sub on'/ the coefficient of earth pressure at - rest for virgin loading is a function of the angle of internal friction Φ' of the sand and is determined as K/sub on/=1 - 0.914 sin Φ', K/sub ou'/ the coefficient of earth pressure at rest for virgin unloading is a function of K/sub on/ and over consolidation ratio(OCR), and is determined as K/sub ou/=K/sub on/(OCR)K/sup a/. The exponent α, increases as the relative density increases. K/sub or'/ the coefficient of earth pressure at rest for virgin reloading decreases in hyperbola type as the vertical stress, σ/sub v/’, increases. And, the stress path at virgin reloading leads to the maximum prestress point, independent upon the value of the minimum unloading stress. The gradient of this curve, m/sub r/ increases as OCR increases.

  • PDF