Browse > Article
http://dx.doi.org/10.5012/jkcs.2003.47.6.541

Prediction of Vapor Pressure of the Inert Gases  

Chung, Jaygwan-G. (Department of Chemical Engineering, Sungkyunkwan University)
Publication Information
Abstract
Experimental vapor pressure measurements available in the literature for the inert gases have been rigorously analyzed and used to evaluate the constants A, B, C, D, and exponent of the following equation in the form of reduced vapor pressure and reduced temperature : $InP_r=A+{\frac{B}{T_r}+CInT_r+DT_n^r}$ According to varying exponent n all four constants have been obtained for the inert gases by the error analysis. This has provided us the best n and four constants for each of the inert gases ; Argon, krypton, xenon, helium, and neon. In order to obtain the calculated vapor pressure by the above equation, only the normal boiling point and the critical pressure and critical temperature are necessary to get the vapor pressure for an overall average deviation of 0.31 % for 406 experimental vapor pressure points consisting of five gases available in the literature. The average deviation for argon, krypton, and xenon is 0.24%, 0.09%, and 0.22%, respectively, for neon 1.31% and for helium 0.61%. These results are not unexpected in view of the significant quantum effects associated with helium and to a lesser degree with neon.
Keywords
Vapor Pressure; Argon; Krypton; Xenon; Helium; Neon; Simulation;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Kemp, R. C.; Kemp, W. R. G..; Cowan, J. A. Metrologia, 1976, 12, 93.   DOI   ScienceOn
2 Lovejoy, D. R. Nature(London), 1963, 197, 353.   DOI
3 Michels, A.; Prins, C. Physica, 1962, 28, 101.   DOI   ScienceOn
4 Olszewski, K. Phil. Trans. R. Soc.(London), 1895, A186, 253.
5 Pool, R. A. H.; Schields, B. D. C.; Staveley, L. A. K Nature(London), 1958, 181, 831.
6 Ramsay, W.; Travers, M.. W. Phil. Trans. R. Soc.(London), 1901, A197, 47. 9
7 Rogovaya, I. A.; Kaganer, M. G. Russ. J. Phys. Chem., 1961, 35, 1049.
8 Teague, R. K.; Pings, C. J. J. Chem. Phys., 1969, 48, 4973.
9 Frost, A. A.; Kalkwarf, D. R. J. Chem. Phys., 1953, 21, 264.   DOI
10 Chung, J. G.; Thodos, G. Chem. Eng. J.(Netherlands), 1976, 12, 219.   DOI
11 Berman, R.; Swenson, C. A. Phys. Rev., 1954, 95, 311.   DOI
12 Schmidt, G.; Keesom, W H. Physica, 1937, 4, 971.   DOI   ScienceOn
13 Kamerlingh Onnes, H. Communs. Phys. Lab. University Leiden, 1911, No. 124b, 11.
14 Cath, P. G.; Kamerlingh Onnes, H. Communs. Phys. Lab. University Leiden, 1921, No.152b, 21.
15 Crornmelin, C. A. Communs. Phys. Lab. University Leiden, 1923, No. 162c, 23.
16 Ancsin, J. Metrologia, 1973, 9, 147.   DOI   ScienceOn
17 Born, F. Ann. Phys., 1922, 69, 473.
18 Chen, H. H.; Lim, C. C.; Aziz, R. A. J. Chem. Thermodynamics, 1975, 7, 191.   DOI
19 Clark, A. M.; Din, F.; Robb, J.; Michels, A.; Wassenaar, T.; Zwietering, T. H. Physica, 1951, 17, 876.   DOI   ScienceOn
20 Clusius, K. Z. Phys. Chem., 1935, B31, 459.
21 Clusius, K. Z. Phys. Chem., 1941, B49, 1.
22 Filipe, E. J. M.; Deiters, U. K; Calado, J. C. G. J. Chem. Thermodynamics, 1998, 30, 1543.   DOI   ScienceOn
23 Verbeke, O. B.; Jansoone, V.; Gielen, R.; De Boelpaep, J. J. Phys. Chem., 1969, 73, 4076.   DOI
24 Meihuizen, J. J.; Crommelin, C. A. Communs. Phys. Lab. University Leiden, 1937, No. 245c, 1.
25 Clusius, K. Z. Phys. Chem., 1941, B50, 403.
26 Filipe, E. J. M.; Gomes de Azevedo, E. J. S.; Martins, L. F. G.; Soares, V. A. M.; Calado, J. C. G. J. Phys. Chem., 2000, B104, 1315.
27 Filipe, E. J. M.;Martins, L. F. G.; Calado, J. C. G; McCabe, C, Jackson, G. J. Phys. Chem., 2000, B104, 1322.
28 Habgood, H. W.; Schneider, W. G. Can. J. Chem., 1954, 32, 98.   DOI
29 Martins, L. F. G.; Filipe, E. J. M.; Calado, J. C. G. J. Phys. Chem., 2002, B106, 1741.
30 Michels, A.; Wassenaar, T. Physica, 1950, 16, 253.   DOI   ScienceOn
31 Plank, R.; Riedel, L. Ing. Arch., 1948, 16, 255.   DOI
32 TRC TRC Thermodynamic Tables Non-Hydrocarbons, vol. V; Thermodynamic Research Center, The Texas A&M Univ., System College Station, TX 77843-3111, U.S.A., 1958; p.k-60, k-70, k-80.
33 Tex. J. Sci., 1949, 1, 86.
34 Goodwin, R. D. J. Res. Natl. Bur. Stand., Sect. A, 1969, 73A, 487.   DOI
35 Keesom, W. H. Physik. Ber., 1923, 4, 613.
36 Smith, J. M.; Van Ness, H. C.; Abbott, M. M. Introduction to Chemical Engineering Thermodynamics, 6th ed.; McGraw-Hill Book Co.: New York, U.S.A., 2001; p.655.
37 De Boer, J.; Bird, R. B. Phys. Rev., 1951, 83, 1259.   DOI
38 Clusius, K.; Schleigh, K.; Vogelmann, M. Helv. Chim. Acta, 1963, 46, 1705.   DOI
39 Clusius, K; Weigand, K. Z. Phys. Chem., 1940, B46, 1.
40 Crommelin, C. A. Communs. Phys. Lab. University Leiden, 1910, No. 115a, 3.
41 Crommelin, C. A. Communs. Phys. Lab. University Leiden, 1913, No. 138c, 23.
42 Flubacher, P.; Leadbetter, A. J.; Morrison, J. A. Proc. Phys. Soc(London)., 1961, 78, 1149.   DOI   ScienceOn
43 Frank, A.; Clusius, K. Z. Phys. Chem., 1939, B42, 395.
44 Freeman, M. P.; Halsey, G. D., Jr. J. Phys. Chem., 1956, 60, 1119.   DOI
45 Goldman, K.; Scrase, N. G. Physica, 1969, 45, 1. 2
46 Grigor, A. F.; Steele, W. A. Phys. Chem. Liq., 1968, 1, 129.   DOI   ScienceOn
47 Heastie, R. Proc. Phys. Soc(London)., 1959, 73, 490.   DOI   ScienceOn