• Title/Summary/Keyword: Pressure drainage

Search Result 307, Processing Time 0.022 seconds

Applicability examinations of induced drainage system for reduction of uplift pressure in underpass structures: Numerical study (지하차도 부력저감을 위한 유도배수공법의 적용성 검토: 수치해석적 연구)

  • Jo, Seon-Ah;Jin, Gyu-Nam;Sim, Young-Jong;Cho, Gye-Chun
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.15 no.2
    • /
    • pp.123-134
    • /
    • 2013
  • Urban underground structures at low ground elevations (i.e. shallow substructures) unlike typical tunnel structures are subjected to low overburden and high water pressures. This often causes the underground structures to become damaged. Various conventional methods for the urban underpass structures such as dead weight increasement, round anchors, and tension piles, are significantly conservative and provok concerns about the costly, time-consuming installation process. Recently, permanent drainage system becomes to widely use for supplementing the conventional method's shortcomings, but, it is applied without the considerations for ground conditions and water table. In this study, therefore, numerical analyses are performed with various parameters such as groundwater level, wall height, and ground conditions in order to establish design guidelines for induced drainage system which is a kind of the permanent drainage method constructed at the Y-area. According to the numerical results, the induced drainage system is very effective in reducing the uplift pressure that acts on the base of underpass structures.

Characteristics of Positive Pressure Distribution in Vertical Drainage Method to Prevent Buoyance (부력방지를 위한 연직배수공법의 양압력 분포 특성 분석)

  • Jongin Hong;Namcheol Kim;Youngshin Park;Donghyuk Lee
    • Journal of the Korean GEO-environmental Society
    • /
    • v.24 no.10
    • /
    • pp.33-39
    • /
    • 2023
  • As interest in the use of underground spaces increases, safety against water pressure acting on underground structures is required. In Korea, various buoyancy prevention methods are used to control such underground water pressure, and among them, the vertical drainage method with excellent economic efficiency, constructionability and stability has recently been introduced and applied. However, in the case of the vertical drainage method designed and constructed in the field, it is often designed and constructed depending on numerical analysis, making it difficult to expect practical stability judgment. Accordingly, in this study, an experiment was conducted to measure both pressure by installing a vertical drainage system using a model soil. Based on the measured value by the experiment and the numerical analysis value, we intend to compare and analyze the action positive pressure and use it as basic data for field application.

Behavior Analysis on Earthquake-Induced Deformation of Quay Wall and Apron in Ground at Youngilman Port Considering Drainage Condition Using FEM Analysis (FEM 해석에 의한 지반배수조건에 따른 지진 시 영일만항의 케이슨식 안벽 및 배후지의 거동 분석)

  • Lee, Hak-Ju;Kang, Gi-Chun;Hwang, Woong-Ki;Lee, Min-Sun;Kim, Tae-Hyung
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.31 no.6
    • /
    • pp.386-394
    • /
    • 2019
  • In this study, according to drainage condition (undrained and drained) in ground, the settlement and horizontal displacement of caisson quay wall and apron in Yeongilman port due to excess pore water pressure in ground induced by the magnitude 5.4 earthquake in Pohang on November 15, 2017. In general, seismic response analysis was carried out under undrained drainage condition, but in this study, drain drainage analysis was conducted to estimate displacement during earthquake as well as an additional displacement due to dissipation of excess pore water pressure after earthquake. The result of after earthquake can not be known under undrained drainage condition. Results cleary showed that the behavior of structure and ground was dependent on drainage condition in ground. Especially, based on the drained drainage condition, the additional displacement was clearly detected due to dissipation of excess pore water pressure after earthquake. Which indicates that both results are different to drainage condition in ground, and therefore, drainage condition analysis is necessary to accurately estimate the behavior of ground and structure in seismic response analysis.

Behavior of Geosynthetic Reinforced Wall with Heat Induce Drainage Method During Rainfall (열유도 토목섬유 배수공법이 적용된 보강토 옹벽의 강우시 거동 특성)

  • Shin, Seung-min;Sin, Chun-won;Yoo, Chung-Sik
    • Journal of the Korean Geosynthetics Society
    • /
    • v.15 no.1
    • /
    • pp.11-19
    • /
    • 2016
  • This paper presents the results of a scale model test to the effect of heat exchanger drainage method in retaining wall of weathered granite soil. Purpose to rise in the temperature of the heat wires inside the weathered granite soil is preventing the collapse of the retaining wall and drainage smoothly moved to the drainage layer. Especially using a spray gun to simulate the rainfall since the rainfall drainage work is important for the rainfall effect on soil, find the difference about displacement of the retaining wall, change of volume water content, drainage, earth pressure and change in the strain of the geosynthetic was effected to heat exchanger within the soil. The result from applying the heat exchanger method decreased the earth pressure and displacement of the wall and increased drainage of water.

Utilization of Recycled Aggregates and Crushed Stone as Vertical drains (연직배수재로서 순환골재와 쇄석의 활용방안)

  • Lee, Dal-Won;Lee, Jung-Jun;Kim, Si-Jung;Lee, Young-Hak
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.09a
    • /
    • pp.969-978
    • /
    • 2010
  • In this study, a laboratory model test on utilization of recycled aggregates and crushed stone as vertical drains to use alternative material of sand in soft ground is performed. The vertical and horizontal coefficient of permeability of the recycled aggregates and crushed stone showed largely 1.2~4.0 times and 3.0~3.3 times greater than sand, respectively. Therefore, it showed enough to be an alternative material to the sand which had been being used as the vertical and horizontal drainage material before. The variations of pore water pressure with time showed constantly regardless of the load in all vertical drainage materials. When water level drops suddenly, the pore water pressure of the recycled aggregate and crushed aggregate is reduced to nearly zero. Therefore, it was applicable to the field because discharge capacity was similarity to that of sand. The settlement in crushed aggregates and recycled aggregate decreases gradually with the load increase. When water level drops suddenly, earth pressure in all drains materials was evaluated the equivalent drainage capacity similarity to sand because it show approaching the nearly zero.

  • PDF

Prediction of Excess Pore Water Pressure of Reservoir Embankment Considering Fill and Ponding (성토하중과 수위변화를 고려한 저수지의 과잉공극수압 예측)

  • Lee, Dal-Won;Min, Hag-Gyou
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.03a
    • /
    • pp.1212-1221
    • /
    • 2010
  • A theoretical equation was proposed to consider the effect of fill and ponding for the excess pore water pressure in agricultural reservoir on soft clay ground. For the purpose of verification of the proposed equation, laboratory model tests and field tests were performed and excess pore water pressure was compared to those predicted with the Terzaghi's method. The degree of consolidation according to ponding predicted by applying the proposed equation was close to the observed degree of consolidation on the double drainage condition(at DP-3) but it was less than the observed degree of consolidation on the single drainage condition(at DP-5). The predicted excess pore water pressure according to fill and ponding was very applicable to practice because it was close to the observed data.

  • PDF

Development of Rechargeable High-pressure Gas Valve (Capability of Valve to Drainage) (고압가스 충전용 밸브 개발(드레인밸브 기능포함))

  • Kwon, Kyung-Ok
    • Journal of the Korean Institute of Gas
    • /
    • v.12 no.3
    • /
    • pp.64-67
    • /
    • 2008
  • The valve applied air pressure type of high pressure packing is developed to prolong the lifetime and to enhance the airtight. The effective valve developed enables to get remove the remaining pressure through the part of valve in handle so that a separate valve to drain is no need. The character of valve developed in this experiment is high packing of valve through special form and having drain hole in stem that enables a drainage regardless the status of vale is closed or opened.

  • PDF

A Study on Changes in Characteristics of Drainage Noise from Water Closet Washing (대변기 세정시 발생하는 배수소음의 특성변화에 관한 연구)

  • Soul, Soo-Hwan;Jung, Chul-Woon;Kim, Jae-Soo
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.19 no.11
    • /
    • pp.789-796
    • /
    • 2007
  • It has been noted, in case of the apartments in collective form, the drainage noise from cleaning of toilet causes many problems in the basement and adjacent rooms, mainly hampering the pleasant housing environment. The problems are increasingly raised by civil complaints with the public offices. Therefore, if the drainage noise generates when wash out of toilet bowl is grasped how the characteristics change according to the sorts of drainpipe, it is considered that the establishment of an effective sound insulation countermeasure could be possible when a civil petition against the drainage noise of apartment house is submitted hereafter. On such viewpoint, this study measured and analyzed the characteristics of drainage noise per the type of drainage pipe, according to KS A ISO $1996-1{\sim}3$, with the horizontal branch pipe and riser pipes in the drainage noise experiment chamber which has the characteristics of the anechoic room. In the result, the pipe type with excellent noise reduction function. The result of this study is considered to become available as fundamental data, to take actions on reduction of drainage noise of the ceiling piping method.

Prediction of Excess Pore Water Pressure of Reservoir Embankment on Soft Ground (연약지반상에 축조된 저수지 제방의 과잉공극수압 예측)

  • Min, Hag-Gyou;Lee, Dal-Won
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.50 no.2
    • /
    • pp.37-44
    • /
    • 2008
  • A theoretical equation was proposed to consider the effect of ponding for the excess pore water pressure in agricultural reservoir on soft clay ground. The value of excess pore water pressure predicted using the proposed equation was compared to those predicted with the Terzaghi's method and the finite difference method(FDM), respectively, for the purpose of verification. The degree of consolidation according to ponding predicted by applying the proposed equation was close to the observed degree of consolidation on the double drainage condition(at DP-3) but it was less than the observed degree of consolidation on the single drainage condition(at DP-5). The equation was very applicable to practice because the analysis result by the equation was close to the observed data.

Cyclic Threshold Shearing Strains of Sands Based on Pore Water Pressure Buildup and Variations of Deformation Characteristics (간극수압증가와 동적변형특성 변화에 근거한 사질토 지반의 반복한계전단변형률)

  • Kim, Dong-Soo;Choo, Yun-Wook
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2004.03b
    • /
    • pp.274-281
    • /
    • 2004
  • In this paper, the existing Stokoe type torsional shear equipment is modified to saturate the specimen and measure excess pore water pressure during undrained testing. Two types of sands, Geumgang and Toyoura sands, were collected and TS tests were performed at various densities drainage conditions, and confining pressures. The cyclic threshold shearing strains were estimated based on the variations of shear modulus, material damping ratio and pore pressures with loading cycles. The effects of relative density, confining pressure, and drainage condition on the cyclic threshold shearing strains were investigated.

  • PDF