• Title/Summary/Keyword: Pressure Wave Mode

Search Result 122, Processing Time 0.024 seconds

LOW PRESSURE LOOP EGR SYSTEM ANALYSIS USING SIMULATION AND EXPERIMENTAL INVESTIGATION IN HEAVY-DUTY DIESEL ENGINE

  • Lee, S.J.;Lee, K.S.;Song, S.H.;Chun, K.M.
    • International Journal of Automotive Technology
    • /
    • v.7 no.6
    • /
    • pp.659-666
    • /
    • 2006
  • EGR(Exhaust Gas Recirculation) systems are extensively used to reduce NOx emissions in light duty diesel engine but its application to heavy duty diesel engines is yet to be widely implemented. In this study, the simulation model for a EURO 3 engine was developed using WAVE and then its performance and emission levels were verified with experimental results. The possibility of operating a EURO 3 engine with LPL EGR system to satisfy the EURO 4 regulation was investigated. Each component of the engine was modeled using CATIA and WaveMesher. The engine test mode was ESC 13, and the injection timing and fuel quantity were changed to compensate for the reduction of engine power caused by applying EGR. As a result of the simulation, it was found that EURO 4 NOx regulation could be satisfied by applying an LPL EGR system to the current EURO 3 engine.

A Study of Combustion Instability Mode according to the Variation of Combustor Length in Dual Swirl Gas Turbine Model Combustor (연소실 길이에 따른 이중선회 가스터빈 모델 연소기에서 연소불안정 모드 연구)

  • Jang, Munseok;Lee, Keeman
    • Journal of the Korean Society of Combustion
    • /
    • v.21 no.2
    • /
    • pp.29-37
    • /
    • 2016
  • This study described the experimental investigations of combustion instability in a model gas turbine combustor. Strong coupling between pressure oscillations and unsteady heat release excites a self-sustained acoustic wave, which results in a loud and annoyed sound, and may also lead to a structural damage to the combustion system. In this study, in order to examine the combustion instability phenomenon of a dual swirling combustor configuration, the information of heat release and pressure fluctuation period with respect to the variation in both thermal power and combustor length was collected experimentally. As a result, the fundamental acoustic frequency turned out to increase with the increasing thermal power without respect to the combustor length. The frequency response to the combustor length was found to have two distinct regimes. In a higher power regime the frequency significantly decreases with the combustor length, as it is expected from the resonance of gas column. However, in a lower power regime it is almost insensitive to the combustor length. This insensitive response might be a result of the beating phenomenon between the interacting pilot and main flames with different periods.

Preparation of Polymer Thin Films of Pentafluorostyrene via Plasma Polymerization

  • Ahn, C.J.;Yoon, T.H.
    • Journal of Adhesion and Interface
    • /
    • v.7 no.1
    • /
    • pp.23-29
    • /
    • 2006
  • Polymer thin films of pentafluorostyrene (PFS) were prepared by RF plasma (13.56 MHz) polymerization in continuous wave (CW) mode, as a function of plasma power and monomer pressure. Conditions for film preparation were optimized by measuring the solvent resistance of plasma polymer thin films in DMAc, NMP, THF, acetone and chloroform, as well as by evaluating the optical clarity via UV-VIS measurements. Pulsed mode plasma polymerization was also utilized to enhance the optical properties of the films by varying the period of on-time and duty cycle. Finally, the films were subjected to refractive index measurements and analyzed by ${\alpha}$-step, TGA and FT-IR.

  • PDF

CFD Analysis of Two-Dimensional Floating Body with Moon Pool under Forced Heave Motion (문풀을 가지는 2차원 부유체의 강제 상하동요에 대한 CFD 해석)

  • Heo, Jae-Kyung;Park, Jong-Chun;Kim, Moo-Hyun
    • Journal of Ocean Engineering and Technology
    • /
    • v.25 no.2
    • /
    • pp.36-46
    • /
    • 2011
  • A two-dimensional floating body with a moon pool under forced heave motion, including a piston mode, is numerically simulated. A dynamic CFD simulation is carried out to thoroughly investigate the flow field around a two-dimensional moon pool over various heaving frequencies. The numerical results are compared with experimental results and a linear potential program by Faltinsen et al. (2007). The effects of vortex shedding and viscosity are investigated by changing the corner shapes of the floating body and solving the Euler equation, respectively. The flow fields, including the velocity, vorticity, and pressure fields, are discussed to understand and determine the mechanisms of wave elevation, damping, and sway force.

Damping Patch Placement on Outdoor Unit of Air-conditioner by Using Structural Intensity Technique (구조 인텐서티법을 이용한 에어컨 실외기의 제진재 적용)

  • 김규식;진심원;정인화;이정우;강연준
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.14 no.7
    • /
    • pp.577-585
    • /
    • 2004
  • In this paper, reactive shearing structural intensity method is extended to damping patches placement on outer panels of outdoor unit of air-conditioner to reduce its structural borne noise. The structural intensity is calculated from the normal velocities of structures that are measured by using a laser scanning vibrometer, and $textsc{k}$-space (wave-number domain) signal processing is used to obtain the spatial derivatives in formulation of structural intensity. This method is applied to the outdoor unit of air-conditioner on shaker-exciting mode and operating mode. and then damping patches are placed over area of high reactive shearing structural intensity for reducing the radiated noise. Experimental results show the largest reduction of sound pressure level of an outdoor unit by appling small damping patches to optimal position.

Relationship Between Korean Monthly Temperature During Summer and Eurasian Snow Cover During Spring (우리나라 여름철 월별 기온 변동성과 유라시아 봄철 눈덮임 간의 상관성 분석)

  • Won, You Jin;Yeh, Sang-Wook;Yim, Bo Young;Kim, Hyun-Kyung
    • Atmosphere
    • /
    • v.27 no.1
    • /
    • pp.55-65
    • /
    • 2017
  • This study investigates how Eurasian snow cover in spring (March and April) is associated with Korean temperature during summer (June-July-August). Two leading modes of Eurasian snow cover variability in spring for 1979~2015 are obtained by Empirical Orthogonal Function (EOF) analysis. The first EOF mode of Eurasian snow cover is characterized by a zonally elongated pattern over the whole Eurasian region and its principal component is more correlated with Korean temperature during June. On the other hand, the second EOF mode of Eurasian snow cover is characterized by an east-west dipole-like pattern, showing positive anomalies over eastern Eurasian region and negative anomalies over western Eurasian region. This dipole-like pattern is related with Korean temperature during August. The first leading mode of Eurasian snow cover is associated with anomalous high (low) pressure over Korea (Sea of Okhotsk) during June, which might be induced by much evaporation of soil moisture in Eurasia during March. On the other hand, the second mode of Eurasian snow cover is associated with a wave train resembling with Eurasian (EU)-like pattern in relation to the Atlantic sea surface temperature forcing, leading to the anomalous high pressure over Korea during August. Understanding these two leading modes of snow cover in Eurasian continent in spring may contribute to predict Korean summer temperature.

Development of Real-time Blood Pressure Monitoring System using Radio Wave (전파를 이용한 실시간 혈압 모니터링 시스템 개발)

  • Jang, Dong-won;Eom, Sun-Yeong;Choe, Jae-Ik
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2015.05a
    • /
    • pp.308-311
    • /
    • 2015
  • Because worldwide interest in the health is increased, the real-time health monitoring system has been demanded to be more convenient non-contact and precise medical devices than conventional. Therefore we developed the blood pressure monitoring system using UWB(Ultra Wide Band) radio wave which contact to the human body through the radar and continuously collect a movement signal of the blood vessel. Then the collected data including pulse rate, systolic blood pressure, diastolic blood pressure is processed in real time. The system monitors and controls through a program-based embedded LCD(Liquid Crystal Display) using Qt GUI(Graphic User Interface) to be displayed in real time. We implement the system as a embedded system because of reducing the size of the limited resources. Existing PC GUI design mode is used relatively large memory, therefore it requires more CPU(Central Processing Unit) capacity and processing time.

  • PDF

Novel SAW-based pressure sensor on $41^{\circ}YX\;LiNbO_3$ ($41^{\circ}YX\;LiNbO_3$ 기반 SAW 압력센서 개발)

  • Wang, Wen;Lee, Kee-Keun;Hwang, Jung-Soo;Kim, Gen-Young;Yang, Sang-Sik
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.43 no.1 s.343
    • /
    • pp.33-40
    • /
    • 2006
  • This paper presents a novel surface acoustic wave (SAW)-based pressure sensor, which is composed of single phase unidirectional transducer (SPUDT), three reflectors, and a deep etched substrate for bonding underneath the diaphragm. Using the coupling of modes (COM) theory, the SAW device was simulated, and the optimized design parameters were extracted. Finite Element Methods (FEM) was utilized to calculate the bending and stress/strain distribution on the diaphragm under a given pressure. Using extracted optimal design parameters, a 440 MHz reflective delay line on 41o YX LiNbO3 was developed. High S/N ratio, shan reflection peaks, and small spurious peaks were observed. The measured S11 results showed a good agreement with simulated results obtained from coupling-of-modes (COM) modeling and Finite Element Method (FEM) analysis.

A study on the characteristics of touch-down and passive/wireless pressure sensors using surface acoustic wave (표면탄성파를 이용한 무전원/무선 압력센서 및 Touch-down 특성에 관한 연구)

  • Park, Jin-Il;Oh, Jae-Geun;Lee, Jae-Yun;Choi, Bum-Kyoo
    • Proceedings of the KIEE Conference
    • /
    • 2003.10a
    • /
    • pp.39-41
    • /
    • 2003
  • 본 논문은 TPMS(Tire Pressure Monitoring System) 개발을 목적으로 압력센서를 무전원/무선 표면탄성파 센서를 이용하여 측정할 수 있는 방법을 연구한 것이다. Touch mode 방식의 압력센서의 경우 Touch down 되었을 때 정전용량은 큰 변화를 가지며 이후 압력의 증가에 대해 선형적으로 증가한다는 것을 이론적인 계산을 통해서 확인하였다. 또한 이와 같은 특성은 표면탄성파 센서의 응답 주파수의 변화를 통해 측정이 가능하다는 이론적인 모델링을 제시하였다.

  • PDF

A Parameter Study on the Frequency Characteristics of the Structural-acoustic Coupled System (구조-음향 연성계의 경계값 변화에 따른 방사음 변화)

  • 김양한;서희선
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.14 no.7
    • /
    • pp.604-611
    • /
    • 2004
  • It is well known that wall impedance essentially determines how sound wave transmits from one place to another. The wall impedance is related with its dynamic properties : for example, the mass, stiffness, and damping characteristics. It is noteworthy, however, that the wall impedance is also function of spatial characteristics of two spaces that is separated by the wall. This is often referred that the wall is not locally reacting. In this paper, we have attempted to see how the acoustic characteristics of the two spaces is affected by various structure parameters such as density, applied tension, and a normalized length of the wall. Calculations are conducted for two different modally reacting boundary conditions by modal expansion method. The variation of the Helmholtz mode and the structural-dominated mode are analyzed as the structure parameters vary. The displacement distribution of the structure, pressure and active intensity of the inside and outside cavity are presented at the Helmholtz mode and the structure-dominated mode. It is shown that the frequency characteristics are governed by both structure-and fluid-dominated mode. The results exhibit that the density of the structure is the most sensitive design parameter on the frequency characteristics for the coupling system as we could imagine in the beginning. The Helmholtz mode frequency decrease as density increases. However. it increases as applied tension and an opening size increase. The bandwidth of the Helmholtz mode is mainly affected by density of the structure and its opening size.