• 제목/요약/키워드: Pressure Resistance

검색결과 2,163건 처리시간 0.028초

RESISTANCE TO AIR FLOW OF FRUITS IN BULK AND IN A CARTON

  • Yun, Hong-Sun;Cho, Young-Kil;Park, Kyung-Kyu
    • 한국농업기계학회:학술대회논문집
    • /
    • 한국농업기계학회 1996년도 International Conference on Agricultural Machinery Engineering Proceedings
    • /
    • pp.896-905
    • /
    • 1996
  • Pressure drop, as a function of air flow, was measured for tomatoes and mandarins in bulk with different sizes, stacking arrangements and bed porosities. Pressure drop was also measured on carton vent holes and on a carton of packed fruits . and the cumulative effects of air flow resistance of vent holes and packed fruits in bulk on the air flow resistance of a carton of fruits were evaluated . Equation were presented to describe pressure drop bulk fruits, of an empty carton and of a carton of packed fruits as related to the air velocity , the bed porosity, the fruit diameter and the opening ratio of the vent hole.

  • PDF

Effects of Resistance Exercise with Pressure Biofeedback Unit on the Gait Ability and Knee Joint Function in Subject with Total Knee Replacement Patients

  • Jin Park
    • The Journal of Korean Physical Therapy
    • /
    • 제36권1호
    • /
    • pp.27-32
    • /
    • 2024
  • Purpose: This study was conducted to verify the effect of applying a pressure biofeedback unit on walking ability and knee joint function while performing knee joint extensor strengthening exercises using resistance exercise equipment in total knee replacement (TKR) patients. Methods: This study was conducted on twelve patients receiving rehabilitation treatment after being admitted to a rehabilitation hospital post-TKR. Of these, six were allocated to a feedback group with a pressure biofeedback unit, and the other 6 were allocated to a control group without a pressure biofeedback unit. The subjects performed an exercise program for 45 minutes per session, five times a week, for two weeks. Walking ability and knee joint function were evaluated and analyzed before and after exercise. Results: The feedback group showed significantly better improvements in walking speed, gait cycle, step length on the non-operation side, time on the foot on the operation side, K-WOMAC stiffness, and K-WOMAC function than the control group (p<0.05). Conclusion: When strengthening the knee joint extensor muscles using resistance exercise equipment in TKR patients, the provision of a pressure biofeedback unit was found to improve walking ability and knee joint function by inducing concentric-eccentric contraction of the knee joint extensor muscles. Therefore, the study shows that exercise based on the provision of a pressure biofeedback unit should be considered when strengthening knee joint extensor muscles to improve the walking ability and knee joint function of TKR patients in clinical practice.

산물퇴적 청과물의 송풍저항 특성 (Resistance to Air Flow through Fruits and Vegetables in Bulk)

  • 윤홍선;조영길;박판규;박경규
    • Journal of Biosystems Engineering
    • /
    • 제20권4호
    • /
    • pp.333-342
    • /
    • 1995
  • The resistance to air flow through fruits and vegetables in bulk was an important consideration in the design of the pressure cooling system. The amount of resistance to air flow through produce in bulk normally depended upon air flow rate, stacking depth, porosity, stacking patterns and shape and site of product. But, there was not enough information relating the effects of those factors on air flow resistance. The objectives of this study were to investigate the effect of stacking depth, stacking patterns, porosity and airflow rate on airflow resistance and to develop a statistical model to predict static pressure drop across the produce bed as a function of air flow rate, stacking depth, bed porosity, and product size. Mandarins and tomatoes were used in the experiment. The airflow rate were in the range of 0.1~1.0 ㎥/s.$m^2$, the porosity were in the range of 0.25~0.45, the depth were in the range of 0.3~0.9m and the equivalent diameters were 5.3cm and 6.3cm for mandarins, and 6.5cm and 8.5cm for tomatoes. Three methods of stacking arrangement were used i.e. cubic, square staggered, and staggered stacking arrangement. The results were summarized as follows. 1. The pressure drops across produce bed increased in proportion to stacking depth and superficial air velocity and decreased in proportion to porosity. 2. The increasing rates of pressure drop according to stacking patterns with the increase of superficial air velocity were different one another. The staggered stacking arrangement produced the highest increasing rate and the cubic stacking arrangement produced the lowest increasing rate. But it could be assumed that the stacking patterns had not influenced greatly on pressure drops if it was of equal porosity. 3. The statistical models to predict the pressure drop across produce bed as a function of superficial air velocity, stacking depth, porosity, and product diameter were developed from these experiments.

  • PDF

금속박판 접합용 고분자화합물시트를 이용한 박형 히트파이프 내압성 및 유효열전도율 평가에 관한 연구 (A Study on the Evaluation of Pressure Resistance and Effective Thermal Conductivity of Thin Heat Pipes Using Polymer Compound Sheets for Bonding Metal Thin Plates)

  • 유병석;김정훈;김동규
    • 한국산업융합학회 논문집
    • /
    • 제24권4_2호
    • /
    • pp.509-515
    • /
    • 2021
  • In this study, a pressure vessel for a heat pipe was fabricated by bonding a metal thin film using a polymer compound sheet. In order to confirm the applicability of the experimentally manufactured copper material thin heat pipe of 0.6 mm or less, the pressure resistance and effective thermal conductivity for pressure generated according to the type of the working fluid of the heat pipe were evaluated to suggest the commercialization potential of the thin heat pipe. As a result of evaluating the pressure resistance and effective thermal conductivity performance of the thin heat pipe, the following conclusions were drawn. 1) Using a PEEK-based polymer compound sheet, it was possible to fabricate a pressure vessel for a thin heat pipe with a pressure resistance of up to 1.0 MPa by bonding a copper thin film, and the possibility of commercialization was confirmed at a temperature below 120 ℃. 2) In the case of the effective thermal conductivity performance evaluation test, the effective thermal conductivity of ethanol was higher than that of FC72 and Novec7000, and in the case of ethanol, the maximum effective thermal conductivity was 2,851 W/mK at 3.0 W of heating.

공기압에 따른 타이어의 안전성 및 경제성에 관한 실험적 연구 (An Experimental Study of Tire Safety & Economical Efficiency with Respect to Inflation Pressure)

  • 홍승준;이호근
    • 한국자동차공학회논문집
    • /
    • 제18권1호
    • /
    • pp.8-13
    • /
    • 2010
  • Many vehicles have significantly under-inflated tires, primarily because drivers infrequently check their vehicles' tire pressure. When a tire is used while significantly under-inflated, its sidewalls flex more and the tire temperature increases, increasing stress and the risk of failure. In this study we evaluated tire safety and economical efficiency at various inflation pressure. For tire safety we performed FMVSS indoor durability test, measurement of rolling tire temperature, braking performance at dry/wet road condition, and rolling resistance test for economical efficiency. Results show that low pressure decreases tire durability of both speed-increase condition and load-increase condition. Heat temperature of rolling tire increases as pressure decreases and significantly under-inflated tires cause increase of vehicle's stopping distance at wet road condition. Also Under-inflation increases the rolling resistance of a tire and, correspondingly, decreases vehicle's fuel economy.

A Comparison of Standard Methods for Evaluating the Water Resistance of Shell Fabrics

  • Kwon, Myoung-Sook;Nam, Youn-Ja
    • The International Journal of Costume Culture
    • /
    • 제4권3호
    • /
    • pp.241-248
    • /
    • 2001
  • Re water resistance of shell fabrics intended for we in outdoor apparel was measured using three different standard test methods, ASTM D 751, hydrostatic resistance, procedure A(Mullen test -- with and without a fabric support) and Procedure B (Hydrostatic head test). A database of information on their water resistance performance was created. The data collected with different methods were correlated and the advantages and disadvantages of each method were compared. The Mullen test with a support appears to give higher and more favorable water resistance values on shell fabrics preventing fabric rupture during the test. The hydrostatic head test gave lower hydrostatic pressure values than those measured on the two Mullen tests. The Mullen test is recommended for testing the water resistance of fabrics that high a relatively high water resistance because the Mullen tester applies a wide range of pressure. The hydrostatic head test is recommended for testing the fabrics that have relatively low water resistance. The area of the fabric sample that is in contact with the water is smaller in the Mullen test, so higher pressure levels can be reached and more samples should probably be tested to get a representative value for each fabric types. Furthermore, the hydrostatic head test was deemed more repeatable than the Mullen tests in his study.

  • PDF

금속의 평면 접촉면에서 표면부식에 의한 열접촉 저항의 변화 (Variation of Thermal Contact Resistance for a Corroded Plane Interface of Metals)

  • 김철주;김원근
    • 설비공학논문집
    • /
    • 제3권4호
    • /
    • pp.256-262
    • /
    • 1991
  • The corrosion effects on thermal contact resistance were experimentally studied for a given contact interface of a couple of metals. 2 cylindrically shaped test pieces, the one was carbon steel whose surface was machined by lathe and the other was stainless steel, ground, were come into contact under pressure, and then submerged to $HNO_3$ gas environment. While the corrosion process was going on, the thermal contact resistance was measured with time. The experiment was performed for 2 cases; 1) Highly compress the test pieces and then bring them to $HNO_3$ gas environment. 2) Anteriorly corrode the interface under low contact pressure and then increase the contact pressure. The results were as follows; In 1st. case of experiment, the thermal contact resistance seemed to be very stable, and showed low values with a tendancy of small decrease with time. But in 2nd. case the resistance was unstable and jumped to a value of 200-250% more then that expected for uncontaminated interface. More over it demonstrated some increase with time.

  • PDF

Effects of Air Injections on the Resistance Reduction of a Semi-Planing Hull

  • Kim, Gyeong-Hwan;Kim, Hyo-chul
    • Journal of Hydrospace Technology
    • /
    • 제2권2호
    • /
    • pp.44-56
    • /
    • 1996
  • The effects of the air on the reductions in resistance when supplied under the bottom of a semi-planing ship with a step are investigated in the present study. A 1.275m long FRP model is constructed and the pressure and viscous tangential stresses over the planing surface of the hull with and without air supply are measured through measuring holes carefully selected at the towing tank of Seoul National University. Locations of holes most suitable for air injection are surveyed in front of the planing surface of the model with careful examinations of the limiting streamlines and pressure distributions measured without air supply. At those locations, found to be just front of the step, air has been supplied into a wake region to form an air filled cavity of fixed type. Flow rates and pressure of the supplied air as well as the local pressure and shear stress distributions on the hull surface are measured to understand the physics involved as well as to determine the conditions most effective in resistance reduction at the design speed. It has been found that total resistance of the stepped semi-planing hull can be considerably reduced if an air cavity generated by an adequate air injection at the bottom of the hull near the step. After the cavity optimized at the given speed, air bubbles also have been generated right behind the point where dividing streamlines re-attach to further reduce the frictional resistance but found to be not so effective as the air cavity in resistance reductions.

  • PDF

A Method of Squeegee pressure Optimization for Mass Production Thick Film Heaters Using SPC and Neural Network

  • Luckchonlatee, Chayut;Chaisawat, Ake
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2002년도 ITC-CSCC -1
    • /
    • pp.22-25
    • /
    • 2002
  • The Mass production of ceramic heater has encountered with the estimation for the proper parameters of the printing conditions. This paper presents a method to estimate the squeegee pressure. It uses resistance distribution from the trial run with approximate squeegee pressure which comes from statistical process control (SPC). Then, the resistance distribution and its total resistance are input to the backpropagation neural networks that can recognize resistance's distribution patterns. The value of output network derived from the input value can identify to the appropriate squeegee pressure. The experimental results are demonstrated In ensure the efficiency and the reliability of this method with the accuracy 96.75 percent. Indeed, embedded on this method will aid us to reduce the loss from the normal mass production.

  • PDF

RESISTANCE OF COFFEE BEANS AND COFFEE CHERRIES TO AIR FLOW

  • Nordin Irbrahim, M.
    • 한국농업기계학회:학술대회논문집
    • /
    • 한국농업기계학회 1993년도 Proceedings of International Conference for Agricultural Machinery and Process Engineering
    • /
    • pp.886-895
    • /
    • 1993
  • Experimental were conducted to obtain information on the effect of airflow rates and bed depths on the resistance of coffee cherries and coffee beans available locally (Coffea Liberica). The airflow used were in the range of 0.06 to 0.6 cu. m/s-sq.m. The moisture content of the coffee cherries ranged from 10 % to 50% (wet basis) and that of coffee beans ranged from 12% to 30% )wet basis). Two methods of filling were used i.e. loose fill and packed fill. Pressure drops across the material bed in a vertical column were measured at several depths using inclined manometer. The pressure drop increased directly with air flow rate as well as bed depths. The effects of air flowrates and moisture contents on the resistance in terms of pressure drip per unit bed depth were analysed. The pressure drop per unit depth across the material bed varied slightly due to different depth. The resistance to airflow decreased with the increase in moisture content for loose fill. However, the effect of moisture content is not apparent for packed fill.

  • PDF