• Title/Summary/Keyword: Pressure Propagation

Search Result 670, Processing Time 0.021 seconds

Effects of propane substitution for safety improvement of hydrogen-air flame (수소-공기 화염의 안전성 향상을 위한 프로판 첨가 효과)

  • Kwon, Oh-Chae
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.15 no.1
    • /
    • pp.12-22
    • /
    • 2004
  • In order to evaluate the potential of partial hydrocarbon substitution to improve the safety of hydrogen use in general and the performance of internal combustion engines in particular, the outward propagation and development of surface cellular instability of spark-ignited spherical premixed flames of mixtures of hydrogen, hydrocarbon, and air were experimentally studied at NTP (normal temperature and pressure) condition in a constant-pressure combustion chamber. With propane being the substituent, the laminar burning velocities, the Markstein lengths, and the propensity of cell formation were experimentally determined, while the laminar burning velocities and the associated flame thicknesses were computed using a recent kinetic mechanism. Results show substantial reduction of laminar burning velocities with propane substitution, and support the potential of propane as a suppressant of both diffusional-thermal and hydrodynamic cellular instabilities in hydrogen-air flames.

Similarity Relations of Resin Flow in Resin Transfer Molding Process

  • Um, Moon-Kwang;Byun, Joon-Hyung;Daniel, Isaac M.
    • Advanced Composite Materials
    • /
    • v.18 no.2
    • /
    • pp.135-152
    • /
    • 2009
  • Liquid molding processes, such as resin transfer molding, involve resin flow through a porous medium inside a mold cavity. Numerical analysis of resin flow and mold filling is a very useful means for optimization of the manufacturing process. However, the numerical analysis is quite time consuming and requires a great deal of effort, since a separate numerical calculation is needed for every set of material properties, part size and injection conditions. The efforts can be appreciably reduced if similarity solutions are used instead of repeated numerical calculations. In this study, the similarity relations for pressure, resin velocity and flow front propagation are proposed to correlate another desired case from the already obtained numerical result. In other words, the model gives a correlation of flow induced variables between two different cases. The model was verified by comparing results obtained by the similarity relation and by independent numerical simulation.

Numerical Simulation of the Aeroacoustic Noise in the Separated Laminar Boundary Layer

  • Park, Hyo-Won;Young J. Moon;Lee, Kyu-Jung
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.2
    • /
    • pp.280-287
    • /
    • 2003
  • The unsteady flow characteristics and the related noise of separated incompressible laminar boundary layer flows (Re$\sub$$\delta$/* = 614, 868, and 1,063) are numerically investigated. The characteristic lines of the wall pressure are examined to identify the primary noise source, related with the unsteady motion of the vortex at the reattachment point of the separation bubble. The generation and propagation of the vortex-induced noise in the separated laminar boundary layer are computed by the method of Computational Aero-Acoustics (CAA), and the effects of Reynolds number, Mach number and adverse pressure gradient strength are examined.

유압용 액셜 피스톤 펌프의 압력맥동 특성(유압필터에 의한 고주파 압력맥동의 흡수)

  • 김도태
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1998.03a
    • /
    • pp.281-286
    • /
    • 1998
  • In this paper, a Helmholtz resonator type hydraulic filter is proposed to absorb flow and pressure ripple produced from a axial piston pump. The basic principle of hydraulic filter is applied to propagation of preossure waves, reflection, absorption in cross section of discontinuity and resonance in the pipeline. This filter has advantage of the compact size and high degree of freedom of installation. The design scheme of hydraulic filter based on viscous wave theory are developed and manufactured two kinds of filter to investigate damping capability. It is experimently confirmed that these filter is absorbed to be about 20dB of flow and pressure ripple with high frequencies.

  • PDF

Estimation of Hysteretic Interfacial Stiffness of Contact Surfaces

  • Kim, Nohyu
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.33 no.3
    • /
    • pp.276-282
    • /
    • 2013
  • This paper proposes an ultrasonic method for measurement of linear and hysteretic interfacial stiffness of contacting surfaces between two steel plates subjected to nominal compression pressure. Interfacial stiffness was evaluated by the reflection and transmission coefficients obtained from three consecutive reflection waves from solid-solid surface using the shear wave. A nonlinear hysteretic spring model was proposed and used to define the quantitative interfacial stiffness of interface with the reflection and transmission coefficients. Acoustic model for 1-D wave propagation across interfaces is developed to formulate the reflection and transmission waves and to determine the linear and nonlinear hysteretic interfacial stiffness. Two identical plates are put together to form a contacting surface and pressed by bolt-fastening to measure interfacial stiffness at different states of contact pressure. It is found from experiment that the linear and hysteretic interfacial stiffness are successfully determined by the reflection and transmission coefficient at the contact surfaces through ultrasonic pulse-echo measurement.

The Effect of Load Impedances on the Frequency Response of Pressure Propagation in the Pneumatic Transmission Line (기체 전달 관로에 있어서 압력 전파의 주파수 응답에 대한 부하 임피던스의 영향)

  • Yoon, S.J.;Son, B.J.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.6 no.4
    • /
    • pp.344-353
    • /
    • 1994
  • This study numerically analyzed the dynamic characteristics of the frequency response on the pneumatic transmission line with load impedances. The pressure transfer function is represented by the distributed parameter line model. To validate the mathematical approximations of Bessel function ratios, the results of frequency response in a blocked line were compared with those obtained by the Infinite-product, Brown's and Square-root approximations. Special emphasis was given to the frequency response characteristics on the pneumatic transmission line with load impedances. Computations were carried out for the wide range of parameters in terms of load capacitance ratio and load resistance ratio. The present results indicated that the theoretical model is capable of accurately predicting the frequency response characteristics for any configuration of a fluid transmission line.

  • PDF

Experimental Study for Developing Silencer Adapted by Large Caliber Gun (대구경 화포용 소음기 개발을 위한 실험적 연구)

  • Lee, Hae-Suk;Park, Sung-Ho
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.25 no.9
    • /
    • pp.593-598
    • /
    • 2015
  • In this paper, the silencer for large caliber gun to reduce the propagation of gun-generated noise was studied. The results of structural analysis and firing test were described. Structural analysis was conducted by using a commercial program, ANSYS, and showed that there was not any structural problem. The sound pressure level was diminished about 10 dB by the silencer adapted in front of the gun and the soundness of the material was verified from the internal pressure measurement. The reduction of weight, improvement of durability and speed-up of actuating device have to be studied later to improve the usability of silencer for large caliber gun.

A Study on the Combustion Characteristics of Opposed-jet-Flames in a Divided Combustion Chamber (분할연소실내의 대향분출화염의 연소특성에 관한 연구)

  • 조경국;정인석;정경석
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.9 no.4
    • /
    • pp.50-60
    • /
    • 1987
  • Combustion characteristics of opposed-jet-flames spouting out from dual prechambers of a divided combustion chamber were investigated by using high speed schilieren photography and chamber pressure measurement. Result shows that opposed-jet-flames are characterized by the parameter ( $A_{ori}$/ $V_{p}$) and there exists a certain critical value of ( $A_{ori}$/ $V_{p}$)c which distinguishes flame propagation patterns in the main chamber. Also higher chamber pressure and shorter total burning time can be derived by adopting this dual prechamber divided combustion chamber, which would lead a possibility of an appropriate combustion method of high load and low emissions.ons.ons.

  • PDF

Covalently-Bonded Solid Solution Formed by Combustion Synthesis

  • Ohyanagi, Manshi;Munir, Zuhair A.
    • The Korean Journal of Ceramics
    • /
    • v.6 no.3
    • /
    • pp.250-257
    • /
    • 2000
  • The feasibility of synthesizing SiC-AlN solid solution by field-activated combustion synthesis was demonstrated. At lower fields of 8-16.5V/cm, composites of AlN-rich and SiC-rich phases were synthesized, but at fields of 25-30 V/cm, the product was a 2H structure solid solution. Combustion synthesis of the solid solution by nitridation of aluminum with silicon carbide under a nitrogen gas pressure of 4-8 MPa was also investigated. The maximum combustion temperature and wave propagation velocity were found to be influenced by the electric field in the field-activated combustion synthesis, and by the green density and nitrogen pressure in the combustion nitridation. In both cases the formation of solid solutions is complete within seconds, considerably faster than in conventional methods which require hours.

  • PDF

Application of Hyperbolic Two-fluids Equations to Reactor Safety Code

  • Hogon Lim;Lee, Unchul;Kim, Kyungdoo;Lee, Won-Jae
    • Nuclear Engineering and Technology
    • /
    • v.35 no.1
    • /
    • pp.45-54
    • /
    • 2003
  • A hyperbolic two-phase, two-fluid equation system developed in the previous work has been implemented in an existing nuclear safety analysis code, MARS. Although the implicit treatment of interfacial pressure force term introduced in momentum equation of the hyperbolic equation system is required to enhance the numerical stability, it is very difficult to implement in the code because it is not possible to maintain the existing numerical solution structure. As an alternative, two-step approach with stabilizer momentum equations has been selected. The results of a linear stability analysis by Von-Neumann method show the equivalent stability improvement with fully-implicit solution method. To illustrate the applicability, the new solution scheme has been implemented into the best-estimate thermal-hydraulic analysis code, MARS. This paper also includes the comparisons of the simulation results for the perturbation propagation and water faucet problems using both two-step method and the original solution scheme.