• Title/Summary/Keyword: Pressure Monitoring System

Search Result 544, Processing Time 0.029 seconds

Development of TPMS Device and Mobile App System for Marine Emergency Notification (해양 응급상황 알림을 위한 TPMS 디바이스와 모바일 앱 시스템 개발)

  • Dong-Hwan Gong
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.24 no.3
    • /
    • pp.49-53
    • /
    • 2024
  • Maritime safety is a critical factor in protecting lives from accidents at sea and fostering a safer marine environment. In this study, we developed a TPMS device aimed at enhancing maritime safety, providing technological solutions for detecting accidents at sea and enabling swift responses. The device utilizes a Tube Pressure Monitoring System (TPMS) to detect tube expansion and is designed to collect real-time data and communicate with surrounding devices for rapid responses. Experimental results confirm the effective detection of pressure by TPMS (Tube Pressure Monitoring System) and stable data transmission and reception with the main IoT device. Additionally, a mobile app capable of receiving emergency alert messages and accessing information for rapid responses in emergency situations was developed. The developed device and mobile app encompass technology applicable not only in the maritime safety field but also in various other application areas, with potential for expanded application in real-world scenarios in the future. These results are expected to contribute to enhancing safety in the marine environment.

Development of a Portable Total-phosphorus Monitoring System for Preventing Eutrophication in Advance (부영양화 사전 예방을 위한 휴대용 총인 모니터링 시스템 개발)

  • Jung, Dong Geon;Kim, Seung Deok;Kwon, Soon Yeol;Lee, Jae Yong;Kim, Yu Seong;Lee, Junyeop;Kim, JaeKeon;Kim, Sae-Wan;Kong, Seong Ho;Jung, Daewoong
    • Journal of Sensor Science and Technology
    • /
    • v.29 no.5
    • /
    • pp.342-347
    • /
    • 2020
  • In this study, a portable total-phosphorus (TP) monitoring system utilizing a photocatalytic-reaction-based pretreatment method is proposed, fabricated, and characterized. Commercial TP monitoring systems are only used in laboratories because of their complex monitoring procedure, bulk-size, and high-cost. In particular, pretreatment in commercial TP monitoring systems is performed at high temperatures (> 120 ℃) and pressure (> 1.1 kg cm-2) making it difficult to minimize the scale of the systems. The proposed TP monitoring system employs a pretreatment method with a photocatalytic reaction; thus, its size can be reduced, as photocatalytic reactions occur at room temperature and atmospheric pressure. Analytes with various TP concentrations are pretreated using the proposed portable TP monitoring system and are quantitatively measured with an LED and a photodiode.

A Case Study on the Field Monitoring of the Deep Rock Excavation Site in Urban Area on Severe Unbalanced Pressure Condition (편토압이 심한 도심지 대심도 암반굴착공사에서의 계측사례)

  • Kim, Tae-Seob;Kim, Woong-Kyu;Jung, Chang-Won;Han, Chul-Hee
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.10a
    • /
    • pp.1259-1267
    • /
    • 2008
  • One of the most important item for insuring the stability of ground in urban deep excavation site near by major structure such as subway is displacement control of earth retaining wall. The field monitoring system is classified by two types as manual system and automatic system. The application case of latter type of field monitoring is increased because real time measurement is possible in automatic system and that is correspondent with the recent constructional trend. Though the automatic monitoring system is more useful and advanced than manual monitoring system, accuracy of the system is not verified sufficiently. It was examined that the reliance of automatic monitoring system in this paper through the comparison of monitoring result obtained one of deep urban excavation site in which the each type of monitoring system was executed concurrently. Result of the examination is that the two types of monitoring system is generally alike in view of monitoring result, so the engineering reliance of automatic system was confirmed in case site. This study was researched in restricted one case site, so it is expected more precise analysis from security of more data monitored and progressive study.

  • PDF

Application of a wireless pressure sensing system to coastal wind monitoring

  • Pinelli, J.P.;Subramanian, C.S.;Lapilli, C.;Buist, L.
    • Wind and Structures
    • /
    • v.8 no.3
    • /
    • pp.179-196
    • /
    • 2005
  • This paper describes the application of a wireless data acquisition system to monitor wind pressures and velocities with absolute pressure sensors and an anemometer. The system was developed for future deployment, as part of a research effort currently underway to instrument coastal homes in Florida to monitor roof wind pressures during hurricanes. The proposed wireless system will replace the current system that involves a large amount of hardwired connections from the sensors to the data processing unit that requires labor intensive wiring and preparation of the home. The paper describes comparison studies and field tests to assess the performance of the system. The new system offers the advantages of light hardware, ease of installation, capacity for 48 hours of continuous data acquisition, good frequency and amplitude responses, and a relatively simple maintenance. However, the tests also show that the shape of the shell that has been previously used to protect the sensors might interfere with the proper measurement of the pressures.

Real-time Blood Pressure Monitoring in Porcine Tibial Artery Using LC Resonant Pressure Sensor (LC 공진형 압력 센서를 이용한 돼지 경골 동맥의 실시간 혈압 측정)

  • Choi, Won-Seok;Kim, Jin-Tae;Joung, Yeun-Ho
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.25 no.6
    • /
    • pp.445-450
    • /
    • 2012
  • We have developed an implantable wireless sensor for real time pressure monitoring of blood circulation system. MEMS (micro-electro-mechanical system) technology was adopted as a sensor development method. The sensor is composed of photolithographically patterned inductors and a distributed capacitor in gap between the inductors. A resulting LC resonant system produces its resonant frequency in range of 269 to 284 MHz at 740 mmHg. To read the resonant frequency changed by blood pressure variation, we developed a custom readout system based on a network analyzer functionality. The bench-top testing of the pressure sensors showed good mechanical and electrical functionality. A sensor was implanted into tibial artery of farm pig, and interrogated wirelessly with accurate readings of blood pressure. After 45 days, the sensor's electrical response and histopathology were studied with good frequency reading and biocompatibility.

A Study on Development of Marine Tank Monitoring System (선박용 탱크 모니터링 시스템 개발에 관한 연구)

  • Weon, La-Kyoung;Rhyu, Keel-Soo;Kim, Joo-Won;Seong, Chang-Gyu;Park, Jong-Il;Kim, Tai-Jin
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2006.06a
    • /
    • pp.65-66
    • /
    • 2006
  • As industrial technology recently, a field of marine engineering is demanding integration and manless system. In this study, tank monitoring system is developed, which is able to watch real-time the marine tank for measuring a level, pressure, temperature. The system will provide efficiently measuring data for operator.

  • PDF

Continuous Blood Pressure Monitoring using Pulse Wave Transit Time

  • Jeong, Gu-Young;Yu, Kee-Ho;Kim, Nam-Gyun
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.834-837
    • /
    • 2005
  • In this paper, we describe the method of non-invasive blood pressure measurement using pulse wave transit time(PWTT). PWTT is a new parameter involved with a vascular that can indicate the change of BP. PWTT is measured by continuous monitoring of ECG and pulse wave. No additional sensors or modules are required. In many cases, the change of PWTT correlates with the change of BP. We measure pulse wave using the photo plethysmograph(PPG) sensor in an earlobe and we measure ECG using the ECG monitoring device our made in the chest. The measurement device for detecting pulse wave consists of infrared LED for transmitted light illumination, pin photodiode as light detector, amplifier and filter. We composed 0.5Hz high pass, 60Hz notch and 10Hz low pass filter. ECG measurement device consists of multiplexer, amplifier, filter, micro-controller and RF module. After amplification and filtering, ECG signal and pulse wave is fed through micro-controller. We performed the initial work towards the development of ambulatory BP monitoring system using PWTT. An earlobe is suitable place to measure PPG signal without the restraint in daily work. From the results, we can know that the dependence of PWTT on BP is almost linear and it is possible to monitoring an individual BP continuously after the individual calibration.

  • PDF

Durable and Sustainable Strap Type Electromagnetic Harvester for Tire Pressure Monitoring System

  • Lee, Soobum;Kim, Dong-Hun
    • Journal of Magnetics
    • /
    • v.18 no.4
    • /
    • pp.473-480
    • /
    • 2013
  • A new concept design of electromagnetic energy harvester is proposed for powering a tire pressure monitoring sensor (TPMS). The thin coil strap is attached on the circumferential surface of a rim and a permanent magnet is placed on the brake caliper system. When the wheel rotates, the relative motion between the magnet and the coil generates electrical energy by electromagnetic induction. The generated energy is stored in a storage unit (rechargeable battery, capacitor) and used for TPMS operation and wireless signal transmission. Innovative layered design of the strap is provided for maximizing energy generation. Finite Element Method (FEM) and experiment results on the proposed design are compared to validate the proposed design; further, the method for design improvement is discussed. The proposed design is excellent in terms of durability and sustainability because it utilizes the everlasting rotary motion throughout the vehicle life and does not require material deformation.

Tool Wear and Fracture Monitoring through the Sound Pressure in Turning Process (음압을 이용한 선삭작업에서의 마모, 파손 감시)

  • 이성일
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1997.04a
    • /
    • pp.82-87
    • /
    • 1997
  • In order to make unmanned machining systems with satisfactory performances, it is necessary to incorporate appropriate condition monitoring systems in the machining workstation to provide the required intelligence of the expert. This paper deals with condition monitoring for tool wear and fracture during turning operation. Developing economic sensing and identification methods for turning processes, sound pressure measurement and digital signal processing technique are proposed. The validity of the proposed system is confirmed through the large number of cutting tests.

  • PDF

A Study of the Basic Design for Smart Clothing based on Measurement of the Respiration (호흡 측정 기능의 스마트 의류를 위한 기초 디자인 연구)

  • Cho, Ha Kyung;Min, Se Dong
    • Science of Emotion and Sensibility
    • /
    • v.15 no.4
    • /
    • pp.415-424
    • /
    • 2012
  • According to introduction of Well-Being lifestyle and ageing society, vital sign monitoring system which can be continued measurement of vital sign has been increased their important in field of the healthcare. Under this trend, Respiration monitoring system has been studied and developed in a various way to apply continued monitoring and non-conscious monitoring system. But, Study of the respiration monitoring system based on consumer needs and usability test is insufficient. In this study, Textile capacitive pressure sensor(TCPS) of belt type was developed and tested it's utility and subjective sensibility. TCPS measures respiration signals and can be derived in real time monitoring. As a result, monitoring respiration using textile capacitive pressure sensor offers a promising possibility of convenient measurement of respiration rate (correlation (r=0.9553, p<0.0001). In the result of usability and wearability test, all of categorizes(perceived change, wearability, movement, facility of management, usefulness) were received favorable evaluation on usability test( mean value : 3.8), and suitable location of TCPS in the clothing is deriven on the abdomen part. According to synthetical results, Basic smart clothing design based on respiration monitoring system is proposed.

  • PDF