• Title/Summary/Keyword: Pressure Exchange

Search Result 386, Processing Time 0.033 seconds

Conversion of Methanol to Hydrocarbons over Heteropoly Acids(I) (헤테로폴리산 촉매에 의한 탄화수소로의 메탄올 전환반응(I))

  • Hong, Seong-Soo;Lee, Ho-In
    • Applied Chemistry for Engineering
    • /
    • v.2 no.4
    • /
    • pp.363-371
    • /
    • 1991
  • The catalytic performance and availability of heteropoly compounds for the conversion of methanol to hydrocarbons have been studied. The effects of reaction conditions such as reaction temperature, methanol partial pressure and residence time and the effects of ion-exchange of the catalysts were examined for enhancing the yield of hydrocarbons and the selectivity of low olefins. Their acid strength depended on the kind of countercation, and the yield of hydrocarbons and the selectivity for propylene to propane were closely related to the electronegativity of the corresponding countercations. In contrast to the other heteropoly compounds, the ammonium salt showed a considerably high catalytic activity and a high selectivity for paraffins to low olefins.

  • PDF

A Study on the Macro-Scopic Spray Characteristic of Homogeneous Degree for the GDI Injector According to Mixture(Gasoline-Diesel) Ratio Using Mie-Scattering Method and the Entropy Analysis (Mie 산란 방법과 엔트로피 해석 방법을 이용한 혼합연료비에 따른 분무 균질도 특성에 관한 연구)

  • Lee, Chang-Hee;Lee, Ki-Hyung;Lee, Chang-Sik;;Bae, Jae-Il
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.1
    • /
    • pp.69-75
    • /
    • 2003
  • In this study, his technique was applied to a GDI spray in order to investigate the mixture distribution. In addition, the homogeneity degree and diffusion effect according to ambient temperature in the high pressure chamber were analyzed by using an entropy analysis method. From this experiment, we could find that entropy analysis is very effective method for the analysis of mixture formation, and the entropy values increase with the progress of uniformity in diffusion Process. we tried to provide the fundamental data for parameter which effects on the spray macroscopic characteristics with mixture ratio of diesel and gasoline. In addition, the mixture formation was analyzed by using entropy analysis. The entropy analysis is based on the concept of statistical entropy, and it identifies the degree of homogeneity in the fuel concentration. From the entropy analysis results we could find that the direct diffusion phenomena is a dominant factor in the formation of a homogeneous mixture at downstream of GDI spray especially in vaporizing conditions. As to increasing ambient temperature and increasing gasoline rate, the entropy intensity using the statistic thermodynamics method is increased because evaporation rate is higher gasoline than diesel.

Evaluation on Degradation of Heat exchanger (열교환기의 경년열화 평가)

  • Oh H.S.;Jung H.Y.;Park S.P.;Yang S.D.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.1672-1677
    • /
    • 2005
  • The Heat exchanger to be used in the place of business that is presented an utility period comes to be long and the problem of the length of life shares by the manufacture course and using environment factor. Consequentl, it is came to the front problem of inspection, repair, exchange, the utility stopping, safety and confidence. As a result the possibility which the large safety accident can happen comes to be high. It leads mostly to the large accedent when the explosion accident happens. to keep this, The system which the regular period passes to disuse the structure is prepared but The phenomenon which Time and the strength characteristic of the material change, namely Deradation. but It can't be a preventable solution by accident to the damage. Consequentl, This research can take important role to prevent an every kind accident for domestic pressure vessel by evaluating the mechnical characteristic change of meterial, the structure safety and residual life etc.

  • PDF

Detection of Phagocytosis-Promoting Factor of Culture Supernatant from Feline Peripheral Blood Mononuclear Cells Cultured with Egg White Derivatives (계난백유래물질로 배양한 고양이 말초혈액 단핵구세포 배양상층액중의 탐식촉진인자 검출)

  • 양만표;김기홍
    • Journal of Veterinary Clinics
    • /
    • v.16 no.1
    • /
    • pp.31-36
    • /
    • 1999
  • The aim of this study is to determine the phagocytosis-promoting factor(s) for feline peripheral blood polymorphonuclear cells (PMN) by culture supernatant from mono-nuclear cells (MNC) treated with egg white derivatives (EWD). The phagocytic activity of PMN was analyzed by a flow cytometry system. The EWD did not show direct effect on the phagocytic response of PMN. The phagocytic activity of PMN was enhanced by culture supernatant from MNC but not PMN treated with EWD. Therefore, it was suggested that the enhanced phagocytic activity of feline PMN could be mediated by humoral factor(s) released from MNC treated with EWD. Thus, the phagocytosis-promoting factor(s) in supernatant fraction from MNC culture treated with EWD were isolated by reverse phase high pressure liquid chromatography. The resulting supernatant fraction on 29.02 minutes of retention time showed high phagocytic activity of PMN. The molecular weight of this supernatant fraction was 16 to 18 kDa when analyzed by capillary electrophoresis. The isoelectric point was pH 5.76 when assessed by ion-exchange chromatography. These results suggest that EWD stimulates feline MNC to elaborate a phagocytosis-promoting factor, 16 to 18 kDa of molecular weight, which could be an important mediator for the enhancement of phagocytic activity of feline peripheral blood phagocytes. Further study will be needed to elucidate this phagocytic factor.

  • PDF

Electricity Price Prediction Based on Semi-Supervised Learning and Neural Network Algorithms (준지도 학습 및 신경망 알고리즘을 이용한 전기가격 예측)

  • Kim, Hang Seok;Shin, Hyun Jung
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.39 no.1
    • /
    • pp.30-45
    • /
    • 2013
  • Predicting monthly electricity price has been a significant factor of decision-making for plant resource management, fuel purchase plan, plans to plant, operating plan budget, and so on. In this paper, we propose a sophisticated prediction model in terms of the technique of modeling and the variety of the collected variables. The proposed model hybridizes the semi-supervised learning and the artificial neural network algorithms. The former is the most recent and a spotlighted algorithm in data mining and machine learning fields, and the latter is known as one of the well-established algorithms in the fields. Diverse economic/financial indexes such as the crude oil prices, LNG prices, exchange rates, composite indexes of representative global stock markets, etc. are collected and used for the semi-supervised learning which predicts the up-down movement of the price. Whereas various climatic indexes such as temperature, rainfall, sunlight, air pressure, etc, are used for the artificial neural network which predicts the real-values of the price. The resulting values are hybridized in the proposed model. The excellency of the model was empirically verified with the monthly data of electricity price provided by the Korea Energy Economics Institute.

A Study on the Development of Medical Service Robot (의료용 서비스 로봇 개발에 관한 연구)

  • Kang, Sung-In;Park, Yoon-A;Oh, Am-Suk
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.15 no.6
    • /
    • pp.1245-1250
    • /
    • 2011
  • In this paper, we designed efficient reception system using service robot based on the RFID(Radio Frequency Identification) and HL7(Health Level 7) Protocol. The proposed system offer a paramedic the medical information of the patient, and the patients can receive on a much simpler scale than previously through stable and quick information exchange by RFID and HL7. In addition, We considered environment of medical treatment and designed and implemented standard HL7 message structure. This system was implemented service robots to reception of medical treatment. Furthermore, we have plan to develop bio-sensor which can measure blood pressure, body temperature, etc and interface with robot system by HL7.

Probabilistic Estimation of Thermal Fatigue Performance of Three-Way Catalyst Substrate (삼원 촉매 담체의 확률론적 열피로 성능 평가)

  • Cho, Seok-Swoo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.38 no.6
    • /
    • pp.669-676
    • /
    • 2014
  • A three-way catalyst substrate for domestic passenger car satisfies the design criteria for exhaust gas exchange and pressure drop but does not have satisfactory thermal fatigue performance. Prefracture faults in this three-way catalyst substrate has often been discovered in vehicle repair or vehicle inspection facilities. This paper presents a thermal fatigue performance estimation method for a three-way catalyst substrate using a probabilistic strength reduction factor model. This method is superior to the thermal fatigue performance estimation method for a three-way catalyst substrate that uses a deterministic strength model.

Performance Evaluation of a Plate-Type Membrane Humidifier for PEMFC (고분자전해질연료전지용 판형막가습기 성능 평가)

  • Kho, Back Kyun;Park, JongCheol;Han, In-Su;Shin, Hyun Khil;Hur, Tae Uk;Cho, Sungbaek
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.98.2-98.2
    • /
    • 2011
  • For optimal performance of a proton exchange membrane fuel cell (PEMFC), the membrane electrode assembly (MEA) requires hydration, and the membrane's conductivity depends on water content. A humidifier is required to ensure that the reactant gas, usually hydrogen and air, is hydrated before entering the fuel cell. Dry membrane operation or improper hydration causes performance degradation. Typically, the humidification of a fuel cell is carried out by means of an internal or external humidifier. A membrane humidifier is applied to the external humidification of transportation or residential power generation fuel cell due to its convenience and high performance. In this study, The experiments were constructed with a plate-type membrane humidifier in terms of geometric parameters and operating parameters. The results show that the temperature and pressure, the channel length, the membrane thickness and gas flow rate are critical parameters affecting the performance of the humidifier.

  • PDF

Influence of solvent on the nano porous silica aerogels prepared by ambient drying process (상압건조 나노다공성 실리카 에어로젤에 대한 용매의 영향)

  • Ryu, Sung-Wuk;Kim, Sang-Sig;Oh, Young-Jei
    • Journal of Sensor Science and Technology
    • /
    • v.15 no.5
    • /
    • pp.371-377
    • /
    • 2006
  • Nano porous, transparent silica aerogels monoliths were prepared under ambient drying (1 atm, $270^{\circ}C$) condition by the combination of sol-gel process and surface modification with subsequent heat treatment. Three kinds of solvent, n-hexane, n-heptane and xylene, were selected in the point view of low surface tension and vapor pressure in order to restrain a formation of cracks during drying. Crack-free silica aerogels with over 93 % of porosity and below $0.14g/cm^3$ of density were obtained by solvent exchange and surface modification under atmosphere condition. Optimum solvent was confirmed n-heptane among these solvents through estimation of FT-IR, TGA, BET and SEM. Modified silica aerogel exhibited a higher porosity and pore size compare to unmodified aerogels. Hydrophobicity was also controled by C-H and H-OH bonding state in the gel structure and heat treatment over $400^{\circ}C$ effects to the hydrophobicity due to oxidation of C-H radicals.

Computer Models on Oxygenation Process in the Pulmonary Circulation by Gas Diffusion

  • Chang, Keun-Shik;Bae, Hwang
    • International Journal of Vascular Biomedical Engineering
    • /
    • v.4 no.1
    • /
    • pp.9-16
    • /
    • 2006
  • In this article we introduce computer models that have been developed in the past to determine the concentration of metabolic gases, the oxygen and carbon dioxide, along the pulmonary circulation. The terminal concentration of these gases in the arterial blood is related with the total change of the partial pressure of the same gases in the alveoli for the time beginning with inspiration and ending with expiration. It is affected not only by the ventilation-perfusion ratio and the gas diffusion capacity of the lung membrane but also by the pulmonary defect such as shunt, dead space, diffusion impairment and ventilation-perfusion mismatch. Some pathological pulmonary symptoms such as ARDS and CDPD can be understood through the mathematical models of these pulmonary dysfunctions. Quantitative study on the blood oxygenation process using various computer models is therefore of foremost importance in order to monitor not only the pulmonary health but also the cardiac output and cell metabolism. Reviewed in this paper include the basic and advanced methods that enable numerical study on the gas exchange and on the arterial oxygenation process, which might depend on the various heart and lung physiological conditions listed above.

  • PDF