• 제목/요약/키워드: Pressure Equation

검색결과 2,175건 처리시간 0.026초

초임계 탄화수소 항공유의 열역학적 물성치 예측 기법 연구 (Investigation on a Prediction Methodology of Thermodynamic Properties of Supercritical Hydrocarbon Aviation Fuels)

  • 황성록;이형주
    • 한국분무공학회지
    • /
    • 제26권4호
    • /
    • pp.171-181
    • /
    • 2021
  • This study presents a prediction methodology of thermodynamic properties by using RK-PR Equation of State in a wide range of temperature and pressure conditions including both sub-critical and super-critical regions, in order to obtain thermophysical properties for hydrocarbon aviation fuels and their products resulting from endothermic reactions. The density and the constant pressure specific heat are predicted in the temperature range from 300 to 1000 K and the pressure from 0.1 to 5.0 MPa, which includes all of the liquid and gas phases and the super-critical region of three representative hydrocarbon fuels, and then compared with those data obtained from the NIST database. Results show that the averaged relative deviations of both predicted density and constant pressure specific heat are below 5% in the specified temperature and pressure conditions, and the major sources of the errors are observed near the saturation line and the critical point of each fuel.

반복상재하중에 의해 모형벽체에 작용하는 토압(I) (Earth Pressure Acting on the Model Wall due to Repeating Surcharge Load(I))

  • 전용백
    • 한국산업융합학회 논문집
    • /
    • 제5권1호
    • /
    • pp.65-74
    • /
    • 2002
  • This paper intends to investigate such effects through experiments. The contents of the investigation are effects of position of repeated loading and unloading, passing frequency. For the purpose of the investigation an experimental load-deflection system is developed and the system is possible to measure deflection of the wall and earth pressure due to different size of strip loading and cyclic loading. The findings from the experiments are as follows: 1. As repeated loading approaches to the wall, the measured horizontal residual earth pressure agrees well with Rowe's empirical formula, while as the loading is far from the wall the earth pressure consists with Boussinesq's and Spangler's formulas. Also it is found that below 0.6m depth from ground surface the effects of repeated loading can be nearly neglected. 2. From comparison analyses of earth pressure theories and experimental results, a reagression equation is suggested herein, and earth pressure at any depth and maximum earth pressure due to cyclic loading can be estimated from the equation.

  • PDF

고속철도차량의 유리창 압력에 관한 연구 (A Study on the Window Glass Pressure for High-speed Train)

  • 권혁빈;장대성
    • 한국철도학회논문집
    • /
    • 제13권4호
    • /
    • pp.371-375
    • /
    • 2010
  • 분산형 고속철도차량의 유리창 강도조건을 설정하기 위하여 열차가 터널을 통과하는 동안의 압력변동이 수치적으로 모사되었다. 계산결과를 토대로 객실 내외의 압력차이가 계산되었고, 객실 유리창에 작용하는 하중의 크기가 도출되었다. 열차가 터널을 통과하는 동안의 압력장을 모사하기 위하여 축대칭 Navier-Stokes 방정식에 기반한 전산유체역학이 이용되었다. 차량 내부의 압력변동은 차내 압력변화율과 차 내외부 압력변동의 선형 관계식에 근거한 1차 차분식을 이용하여 계산되었다.

통합보존식 해석과 HCIB 법을 이용한 슬로싱 탱크 내부 갇힌 공기에 의한 압력 진동 모사 (Simulation of a Pulsating Air Pocket in a Sloshing Tank Using Unified Conservation Laws and HCIB Method)

  • 신상묵
    • 대한조선학회논문집
    • /
    • 제58권5호
    • /
    • pp.271-280
    • /
    • 2021
  • The code developed using a pressure-based method for unified conservation laws of incompressible/compressible fluids is expanded to handle moving or deforming body boundaries using the hybrid Cartesian/immersed boundary method. An instantaneous pressure field is calculated from a pressure Poisson equation for the whole fluid domain, including the compressible gas region. The polytropic gas is assumed for the compressible fluid so that the energy equation is decoupled. Immersed boundary nodes are identified based on edges crossing body boundaries. The velocity vector is reconstructed at the immersed boundary node using an interpolation along the assigned local normal line. The developed code is validated by comparing the time histories of pressure and wave elevation for sloshing in a rectangular and a membrane-type tank. The validated code is applied to simulate air cushion effects in a rectangular tank under sway motion. Time variations of pressure fields are analyzed in detail as the air pocket pulsates. It is shown that the contraction and expansion of the air pocket dominate the pressure loads on the wall of the tank. The present results are in good agreement with other experimental and computational results for the amplitude and the decay of the pressure oscillations measured at the pressure gauges.

P2P1 유한요소 공식을 이용한 비압축성 Navier-Stokes 방정식의 반-분리 해법에 관한 연구 (Study of the semi-segregation algorithms of the incompressible Navier-Stokes equations using P2P1 finite element formulation)

  • 조명환;최형권;유정열;박재인
    • 유체기계공업학회:학술대회논문집
    • /
    • 유체기계공업학회 2006년 제4회 한국유체공학학술대회 논문집
    • /
    • pp.349-352
    • /
    • 2006
  • The conventional segregated finite element formulation produces a small and simple matrix at each step than in an integrated formulation. And the memory and cost requirements of computations are significantly reduced because the pressure equation for the mass conservation of the Navier-Stokes equations is constructed only once if the mesh is fixed. However, segregated finite element formulation solves Poisson equation of elliptic type so that it always needs a pressure boundary condition along a boundary even when physical information on pressure is not provided. On the other hand, the conventional integrated finite element formulation in which the governing equations are simultaneously treated has an advantage over a segregated formulation in the sense that it can give a more robust convergence behavior because all variables are implicitly combined. Further it needs a very small number of iterations to achieve convergence. However, the saddle-paint-type matrix (SPTM) in the integrated formulation is assembled and preconditioned every time step, so that it needs a large memory and computing time. Therefore, we newly proposed the P2PI semi-segregation formulation. In order to utilize the fact that the pressure equation is assembled and preconditioned only once in the segregated finite element formulation, a fixed symmetric SPTM has been obtained for the continuity constraint of the present semi-segregation finite element formulation. The momentum equation in the semi-segregation finite element formulation will be separated from the continuity equation so that the saddle-point-type matrix is assembled and preconditioned only once during the whole computation as long as the mesh does not change. For a comparison of the CPU time, accuracy and condition number between the two methods, they have been applied to the well-known benchmark problem. It is shown that the newly proposed semi-segregation finite element formulation performs better than the conventional integrated finite element formulation in terms of the computation time.

  • PDF

실제기체 상태방정식을 적용한 열압축기 내부유동에 대한 수치해석 (Numerical Analysis for the Internal Flow of Thermal Vapor Compressor with real gas equation of state)

  • 강위관;최두열;신지영;김무근
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제35권2호
    • /
    • pp.216-223
    • /
    • 2011
  • 열압축기는 고압 증기를 이용하여 저압 증기를 중간압으로 이송하는 일종의 이젝터이다. 이젝터에 대한 기존의 수치해석 연구는 대부분 작동유체를 이상기체로 취급하고 있으나 상변화가 발생하는 경우 이상기체 거동에서 크게 벗어날 수 있다. 따라서 본 연구에서는 이상기체 상태방정식 대신 Redlich-Kwong 방정식을 적용하여 열압축기 내부 유동을 수치 해석하였고, realizable k-${\epsilon}$ 모델과 SST k-${\omega}$ 모델을 비교한 결과 SST k-${\omega}$ 모델이 shock diamond 패턴과 박리 및 난류경계층을 잘 예측하는 것을 확인할 수 있었다. 또한 실제기체 상태방정식을 사용한 경우가 이상기체 상태방정식을 사용한 경우에 비해 상대적으로 디퓨저 입구 부분과 디퓨저 목부분에서 에너지 손실이 많은 것을 알 수 있었으며, 디퓨저 출구부분에서 shock train에 의한 압력상승은 상대적으로 적으나 pseudo shock에 의한 압력상승은동일한 것으로 확인되었다.

원자로압력용기 노즐부 구속효과를 고려한 파괴인성 평가 (Evaluation of Fracture Toughness considering Constraint Effect of Reactor Pressure Vessel Nozzle)

  • 권형도;이연주;김동학;이도환
    • 한국압력기기공학회 논문집
    • /
    • 제15권1호
    • /
    • pp.71-76
    • /
    • 2019
  • Actual stress distributions in the nozzle of a pressure vessel may not be in plane strain condition, implying that the crack-tip constraint condition may be relaxed in the nozzle. In this paper, a methodology for evaluating the fracture toughness of the ASME Code is presented considering the relaxation of the constraint effect in the nozzle of the reactor pressure vessel. The crack-tip constraint effect is quantified by the T-stress. The equation, which represent the relation between the fracture toughness in the lower constraint condition and the plane strain fracture toughness, is derived using the T-stress. This equation is similar to the method for evaluating the fracture toughness of the Master Curve for low constraint conditions. As a result of evaluating the fracture toughness considering the constraint effect in the reactor inlet, outlet and direct injection nozzles using the proposed equation, it was confirmed that the fracture toughness in the nozzles is higher than the plane strain fracture toughness. Applying the proposed evaluation methodology, it is possible to reflect the relaxation of the constraint effect in the nozzles of the reactor pressure vessel, therefore, the safe operation area on the pressure-temperature limit curve can be prevented from being excessively limited.

실린더에 존재하는 축방향 표면균열에 대한 공학적 J-적분식 (II) - 최적참조응력에 기초한 방법- (Engineering J-Integral Estimation for Internal Axial Surface Cracks in Cylinders (II) -Optimised Reference Stress Based Estimation-)

  • 김진수;김윤재;김영진
    • 대한기계학회논문집A
    • /
    • 제26권11호
    • /
    • pp.2442-2449
    • /
    • 2002
  • This paper provides an reference stress based J estimation equation fur cylinders with finite internal axial surface cracks under internal pressure. In part 1, the J estimation equation based on deformation plasticity using Ramberg-Osgood (R-0) materials is proposed. In this paper, the developed CE/EPRI -type solutions ale then re-formulated based on the reference stress concept. Such a re-formulation provides a simpler equation for J. estimation are then further extended to combined internal pressure and bending. The proposed reference stress based J estimation equation is compared with elastic-plastic 3-D FE results using actual stress-strain data for a Type 304 stainless steel. Good agreement between the FE results and the proposed reference stress based J estimations provides confidence in the use of the proposed method to elastic -plastic fracture mechanics of pressurised piping.

에탄올-공기 예혼합기의 층류 화염두께 예측 (Prediction of Laminar Flame Thickness of Ethanol-Air Pre-Mixture)

  • 권순익;김상진
    • 대한기계학회논문집B
    • /
    • 제28권11호
    • /
    • pp.1417-1423
    • /
    • 2004
  • The thickness of laminar flame and preheat zone was computed from equation with burning velocity and the temperature profile, which is obtained by using premix code of Chemkin program for ethanol-air mixture. The computations were carried out under the unburned gas pressure 0.5bar-30bar and temperature of 300k-700K at 1.0. A difference flame thickness showed between temperature profile and equation with burning velocity. The ratio of flame thickness derived from the equation was about 45∼65% of the temperature profile, and the thickness of preheat zone was about 67.1% of the flame thickness. The flame thickness was decreased by increasing the pressure and temperature, but the effect of pressure is more significant than the effect of temperature on the flame thickness. The flame thickness was predicted by using the following equation. X(mm) = $X_{st}$ (T/300)$^{-0}$.65/(P)$^{-0}$.68/ (0.5bar$\leq$P$\leq$30bar, 300K$\leq$T$\leq$700K)K)

헬름홀쯔 적분 방정식에 기반을 둔 구조물의 음향방사 및 구조/음향 연성 수치해석 (Numerical Simulation of Acoustic Radiation and Fluid/Structure Interaction Based on the Helmholtz Integral Equation)

  • 최성훈
    • 한국음향학회지
    • /
    • 제27권8호
    • /
    • pp.411-417
    • /
    • 2008
  • 본 논문에서는 헬름홀쯔 적분 방정식에서 유도된 식을 이용하여 구조물의 표면 압력을 구조진동 성분에 대한 단순한 적분형태로 표현하여 음향방사 및 구조/음향 연성 문제를 수치적으로 푸는 방법에 대하여 다룬다. 이 식은 임의의 형상에 대하여 유도된 식으로 Rayleigh 식과 유사한 형태를 갖는다. 이 식을 이용하면 표면 압력을 구조물의 속도에 대한 단순 적분 형태로 나타낼 수 있기 때문에 경계요소법과 같이 연립방정식에 대한 행렬식을 풀 필요가 없다. 또한 헬름홀쯔 적분 방정식에 기반을 둔 다른 방법 들이 가지는 해의 유일성 문제도 갖지 않는 장점이 있다. 본 논문에서는 구형 셀에 대하여 수치해와 정해를 비교하여 제안한 방법의 타당성을 검증하였다.