• 제목/요약/키워드: Pressure Coupling

검색결과 442건 처리시간 0.023초

Numerical simulation for unsteady flow over marine current turbine rotors

  • Hassanzadeh, A. Reza;Yaakob, Omar bin;Ahmed, Yasser M.;Ismail, M. Arif
    • Wind and Structures
    • /
    • 제23권4호
    • /
    • pp.301-311
    • /
    • 2016
  • The numerous benefits of Savonius turbine such as simple in structure, has appropriate self-start ability, relatively low operating velocity, water acceptance from any direction and low environmental impact have generated interests among researchers. However, it suffers from a lower efficiency compared to other types of water turbine. To improve its performance, parameters such flow pattern, pressure and velocity in different conditions must be analyzed. For this purpose, a detailed description on the flow field of various types of Savonius rotors is required. This article presents a numerical study on a nonlinear two-dimensional flow over a classic Savonius type rotor and a Benesh type rotor. In this experiment, sliding mesh was used for solving the motion of the bucket. The unsteady Reynolds averaged Navier-Stokes equations were solved for velocity and pressure coupling by using the SIMPLE (Semi-Implicit Method for Pressure linked Equations) algorithm. Other than that, the turbulence model using $k-{\varepsilon}$ standard obtained good results. This simulation demonstrated the method of the flow field characteristics, the behavior of velocity vectors and pressure distribution contours in and around the areas of the bucket.

헤테로코어형 광파이버 압력센서개발을 위한 기초연구 (A Basic Study on Development of the Hetero-core Type Fiber Optic Pressure Sensor)

  • 김영복
    • 유공압시스템학회논문집
    • /
    • 제7권2호
    • /
    • pp.1-6
    • /
    • 2010
  • A new type fiber optic sensing system has been developed as a commercially available standard using the technique of hetero-core spliced fiber optic sensor, for the purposes of monitoring large scaled structures, preserving natural environments and measuring physical phenomenons. The sensing system has been tested and evaluated in a possible outdoor condition in view of the full scaled operation at actual sites to be monitored. Additionally, the developed system in this work conveniently provides us with various options of sensor modules intended to measure such physical quantities as displacement, distortion, pressure, binary states and liquid adhesion. The experiment study has been performed to examine the performance to a pseudo-cracking experiment in the outdoor situation, and to clarify temperature influences to the system in terms of the coupling of optical connectors and the OTDR stability. It has been verified that the sensing system is robust to the temperature change ranging from the general condition to the hard condition. Especially, in this study, the specification and performances of the pressure sensor have been demonstrated to show the capability of inspecting various physical quantities.

  • PDF

유동가속부식이 잠재한 곡관내의 3차원 난류유동 해석 (Three-dimensional Turbulent Flow Analysis in Curved Piping Systems Susceptible to Flow-Accelerated Corrosion)

  • 조종철;김윤일;최석기
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2000년도 춘계학술대회논문집A
    • /
    • pp.900-907
    • /
    • 2000
  • The three-dimensional turbulent flow in curved pipes susceptible to flow-accelerated corrosion has been analyzed numerically to predict the pressure and shear stress distributions on the inner surface of the pipes. The analysis employs the body-fitted non-orthogonal curvilinear coordinate system and a standard $ {\kappa}-{\varepsilon}$ turbulence model with wall function method. The finite volume method is used to discretize the governing equations. The convection term is approximated by a high-resolution and bounded discretization scheme. The cell-centered, non-staggered grid arrangement is adopted and the resulting checkerboard pressure oscillation is prevented by the application of a modified version of momentum interpolation scheme. The SIMPLE algorithm is employed for the pressure and velocity coupling. The numerical calculations have been performed for two curved pipes with different bend angles and curvature radii, and discussions have been made on the distributions of the primary and secondary flow velocities, pressure and shear stress on the inner surface of the pipe to examine applicability of the present analysis method. As the result it is seen that the method is effective to predict the susceptible systems or their local areas where the fluid velocity or local turbulence is so high that the structural integrity can be threatened by wall thinning degradation due to flow-accelerated corrosion.

  • PDF

초임계 압력하의 기체수소-액체산소 화염에 대한 난류모델을 이용한 해석에서 수치기법 평가 (An Evaluation of Numerical Schemes in a RANS-based Simulation for Gaseous Hydrogen/Liquid Oxygen Flames at Supercritical Pressure)

  • 김원현;박태선
    • 한국추진공학회지
    • /
    • 제17권3호
    • /
    • pp.21-29
    • /
    • 2013
  • 초임계조건의 기체수소/액체산소 화염의 난류유동 및 온도장에 대해 난류모델을 이용한 해석이 수행되었다. 실제유체의 연소유동을 해석하기 위하여 화염편모델에 SRK 상태방정식이 도입되었다. 수정된 압력-속도-밀도 연계알고리듬이 초임계유동에 적용되었다. 수정된 알고리듬을 토대로 6개의 대류항 차분법과 4개의 난류모델의 상대적인 성능비교가 이루어졌다. 선택된 난류모델들은 실제유체 연소유동의 다양한 특징을 고려하기 위해서 수정이 필요함을 나타내었다.

비전도 반평판 사이에서 미끄럼 운동하는 평판 층의 열탄성 불안정성 (Thermoelastic Instability of the Layer Sliding between Two Non-conducting Half-planes)

  • 하태원;조용구;김흥섭;이정윤;오재응
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2003년도 춘계학술대회논문집
    • /
    • pp.483-488
    • /
    • 2003
  • Frictional heating in brakes causes thermoelastic distortion of the contacting bodies and hence affects the contact pressure distribution. The resulting thermo-mechanical coupling can cause thermoelastic instability (TEI) if the sliding speed is sufficiently high, leading to non-uniform heating called hot spots and low frequency vibration known as hot judder. The vibration of brakes to the known phenomenon of frictionally-excited thermoelastic instability is estimated studying the interface temperature and pressure evolution with time. A simple model has been considered where a layer with half-thickness ${\alpha}$ slides with speed V between two half-planes which are rigid and non-conducting. The advantage of this properly simple model permits us to deduce analytically the critical conditions for the onset of instability, which is the relation between the critical speed and the growth rate of the interface temperature and pressure. Symmetrical component of pressure and temperature distribution at the layer interfaces can be more unstable than antisymmetrical component. As the thickness ${\alpha}$ reduces, the system becomes more apt to thermoelastic instability. Moreover, the evolution of the system beyond the critical conditions has shown that even if low frequency perturbations are associated with low critical speed, it might be less critical than high frequency perturbations if the working sliding speed is much larger than the actual critical speed of the system.

  • PDF

Development of Ultra-High Pressure Capillary Reverse-Phase Liquid Chromatography/Tandem Mass Spectrometry for High-Sensitive and High-Throughput Proteomics

  • Kim, Min-Sik;Choie, Woo-Suk;Shin, Yong-Seung;Yu, Myeong-Hee;Lee, Sang-Won
    • Bulletin of the Korean Chemical Society
    • /
    • 제25권12호
    • /
    • pp.1833-1839
    • /
    • 2004
  • Recently mass spectrometry and separation methods such as liquid chromatography have become major tools in the field of proteomics. In this report, we describe in detail our efforts to develop ultra-high pressure capillary reverse-phase liquid chromatography (cRPLC) and its online coupling to a mass spectrometer by a nanoelectrospray (nanoESI) interface. The RPLC system is constructed in house to deliver LC solvents at the pressure up to 20,000 psig, which is four times higher than conventional RPLC systems. The high operation pressure allows the efficient use of packed micro-capillary columns (50, 75 and 150 ${\mu}$m i.d., up to 1.5 m long). We will discuss the effect of column diameter on the sensitivity of cRPLC/MS/MS experiments and the utility of the developed technique for proteome analysis by its application in the analysis of proteome samples having different levels of complexity.

단단한 비전도 반평판 사이에서 미끄럼 운동하는 평판층의 열탄성 불안정성 (Thermoelastic Instability of the Layer Sliding between Two Rigid Non-conducting Half-planes)

  • 오재응;하태원;조용구;김흥섭;이정윤
    • 한국자동차공학회논문집
    • /
    • 제12권1호
    • /
    • pp.114-121
    • /
    • 2004
  • Frictional heating in brakes causes thermoelastic distortion of the contacting bodies and hence affects the contact pressure distribution. The resulting thermo-mechanical coupling can cause thermoelastic instability (TEI) if the sliding speed is sufficiently high, leading to non-uniform heating called hot spots and low frequency vibration known as hot judder. The vibration of brakes to the known phenomenon of frictionally-excited thermoelastic instability is estimated studying the interface temperature and pressure evolution with time. A simple model has been considered where a layer with half-thickness$\alpha$slides with speed V between two half-planes which are rigid and non-conducting. The advantage of this properlysimple model permits us to deduce analytically the critical conditions for the onset of instability, which is the relation between the critical speed and the growth rate of the interface temperature and pressure. Symmetrical component of pressure and temperature distribution at the layer interfaces can be more unstable than antisymmetrical component. As the thickness $\alpha$ reduces, the system becomes more apt to thermoelastic instability. For perturbations with wave number smaller than the critical$m_{cr}$ the temperature increases with m vice versa for perturbations with wave number larges than $m_{cr}$ , the temperature decreases with m.

브레이크 패드의 동적 불안정성에 따른 스퀼 소음 발생 원인의 실험적 연구 (An Experimental Study on the Squeal Noise Generation due to Dynamic Instability of Brake Pad)

  • 조상운;임병덕
    • 한국자동차공학회논문집
    • /
    • 제24권5호
    • /
    • pp.520-526
    • /
    • 2016
  • Squeal noise is a typical brake noise that is annoying to both passengers and pedestrians. Its frequency range is fairly wide from 1 kHz to 18 kHz, which can be distressful to people. The brake squeal noise occurs due to various mechanisms, such as the mode coupling of the brake system, self-excited vibration, unstable wear, and others. In this study, several parameters involved in the generation of a squeal noise are investigated experimentally by using a brake noise dynamometer. The speed, caliper pressure, torque, and friction coefficient are measured as functions of time on the dynamometer. The contact pressure and temperature distributions of the disc and the pad are also measured by using a thermal imaging camera and a pressure mapping system. As a result of the simultaneous measurement of the friction coefficient and squeal amplitude as functions of the velocity, it is found that the onset of the squeal may be predicted from the ${\mu}-v$ curve. It is also found that a non-uniform contact pressure causes instability and, in turn, a squeal. Based on the analysis results, design modifications of the pad are suggested for improved noise characteristics.

비정렬 유한체적법을 이용한 비압축성 유동해석 코드 개발 (Development of Incompressible flow solver based on unstructured FVM)

  • 김종태;김용모;맹주성
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 1996년도 춘계 학술대회논문집
    • /
    • pp.33-39
    • /
    • 1996
  • An incompressible flow stover based on the unstructured finite volume method has been developed. The flow domain is discretized by triangles in 2D or tetrahedra in 3D. The convective and viscous fluxes are obtained using edge connectivities of the unstructured meshes. The pressure-velocity coupling is handled by the artificial compressibility algorithm due to its computational efficiency associated with the hyperbolic nature of the resulting equations. Laminar test flow problems are computed and presented with a comparison against other numerical solutions or experimental results.

  • PDF

수압파쇄 균열폐쇄압력 산정을 위한 수치해석 연구 (Numerical Approach for Determination of Shut-in Pressure in Hydrofracturing Test)

  • 최성웅
    • 터널과지하공간
    • /
    • 제21권2호
    • /
    • pp.128-137
    • /
    • 2011
  • 수직 시추공에 대한 일반적인 수압파쇄시험으로부터 구해지는 균열폐쇄압력은 암반의 최소수평주응력을 직접 나타내기 때문에 현지암반의 응력분포양상을 해석하는데 있어서 매우 중요한 요소이다. 그러나 수압파쇄균열의 거동과 현지암반의 응력분포양상의 관계로 인하여 대부분의 경우 이 균열폐쇄압력은 수압파쇄 압력이력곡선 상에서 애매모호한 값으로 나타난다. 본 연구에서는 수압파쇄시험으로부터 균열폐쇄압력을 산정하기 위하여 여러 연구자들에 의해 제안된 기법들의 특성을 비교해 보고자 수치해석을 실시하였다. 즉, 유체의 가압에 의한 암반 내 균열의 발생이라는 수압파쇄의 특성을 모사하기 위하여 H-M couple 해석을 적용하였으며, 또한 수치해석 모델의 형상학적 특성에 따른 균열의 전파양상을 검토하기 위해 4가지 서로 다른 형태의 요소망을 구축하여 해석을 실시하였다. 각각의 요소망에 대한 수치해석 결과, 그래픽 방법이 통계적 방법에 비해 상대적으로 낮은 수준의 균열폐쇄압력을 보였으며, 따라서 시험공 주변에서의 응력 이상대의 존재 및 복잡한 메커니즘을 수반하는 수압파쇄균열의 발생양상을 감안할 때 수압파쇄시험에 의한 균열폐쇄압력의 산정시 특별한 주의가 요구된다.