• Title/Summary/Keyword: Pressure Chamber

Search Result 2,134, Processing Time 0.026 seconds

Structural Safety Evaluation of Multi-Pressure Integrated Chamber for Sport-Multi-Artificial Environment System (스포츠 멀티 인공환경 시스템을 위한 다중압력 일체형 챔버의 구조안전성 평가)

  • Lee, Joon-Ho;Kang, Sang-Mo;Chae, Jae-Ick
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.3
    • /
    • pp.324-328
    • /
    • 2019
  • There are several dedicated individual chambers for sports that are supplied and used, but none of them are multi-pressured all-in-one chambers that can provide a sport-multi environment simultaneously. In this study, we design a multi-pressure (positive / atmospheric / negative pressure) integrated chamber that can be used for the sport-multi-artificial environment system. We presented new chamber designs with enlarged space for the tall users and then carried out structural analysis with maximum stress and structural safety. Under the targeted allowable pressure conditions, maximum stresses occurred at the joint of the shell and the entrance, the structural safety of the chamber was evaluated with the allowable stress of its material. As a result of the structural analysis of the multi-pressure integrated chamber, the maximum stress for the positive pressure and negative pressure conditions was much smaller than the allowable stress of its material. And as a result of the structural safety evaluation, it was confirmed that the design of the final prototype for the chamber was structurally safe by satisfying the safety factor of 2 or more.

Experimental Study on the Characteristics of Pressure Fluctuation in the Combustion Chamber with Branch Tube (분기관을 가진 연소 챔버 내 압력변동 특성에 관한 실험적 연구)

  • Park, Jang-Hee;Lee, Dae-Keun;Shin, Hyun-Dong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.33 no.7
    • /
    • pp.552-558
    • /
    • 2009
  • An experimental study using the combustor with branch tube was conducted in order to model the industry combustor with FGR (flue gas recirculation) system and to study a thermo-acoustic instability generated by a branch tube. The branch tube is a structure used to modify a system geometry and then to change its pressure field, and the thermo-acoustic instability, usually occurs in a confined geometry, can result in serious problems on industrial combustors. Thus understanding of the instability created by modifying geometry of combustor is necessary to design and operate combustor with FGR system. Pressure fluctuation in the combustion chamber was observed according to diameter and length of branch and it was compared with the solution of 1-D wave equation. It was found that branch tube affects the pressure field in the combustion chamber, and the pressure fluctuation in the combustion chamber was reduced to almost zero when phase difference between an incipient wave in the combustion chamber and a reflected wave in the branch tube is $\pi$ at the branch point. Also, the reduction of pressure fluctuation is irrespective of the installed height of branch tube if it is below $h^*=0.9$ in the close-open tube and open-open tube.

A Correlation between the Pressure Oscillation of Combustion Chamber and Thrust Response in a 70 N-class Hydrazine Thruster (70 N급 하이드라진 추력기의 연소실 압력진동 강도와 추력 응답특성의 상관관계)

  • Jung, Hun;Kim, Jeong Soo
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.19 no.3
    • /
    • pp.1-8
    • /
    • 2015
  • A ground hot-firing test(HFT) was accomplished to draw a correlation between the pressure oscillation intensity of combustion chamber and thrust response characteristics in a 70 N-class hydrazine thruster which has been developed recently. Monopropellant grade hydrazine was adopted as a propellant for the HFT, and combustion-chamber characteristic length, propellant injection pressure were applied as test parameters. It was confirmed that the decrease of thrust-chamber diameter and injection pressure augmented the pressure oscillation of stagnation chamber in the test condition specified, and the oscillation hampered the pulse response performance of test models.

Mean Drift Force Acting on a Floating OWC Wave Power Device (부유식 OWC 파력발전 챔버의 파 표류력해석)

  • HONG Do-Chun;HONG Sa-Young;HONG Seok-Won
    • Proceedings of the KSME Conference
    • /
    • 2002.08a
    • /
    • pp.373-376
    • /
    • 2002
  • The drift force acting on a floating OWC chamber in waves is studied taking account of fluctuating air pressure in the air chamber. A velocity potential in the water due to the free surface oscillating pressure patch is added to the conventional radiation-diffraction potential problem. The potential problem inside the chamber is formulated by making use of the Green integral equation associated with the Rankine Green function while the outer problem with the Kelvin Green function. The drift forces as well as the chamber motions are calculated taking account of the air pressure in the chamber.

  • PDF

The Spray Measurements of Gasoline, M85, E85, and LPG by a GDI Injector in a Constant Volume Chamber (정적챔버에서 GDI용 연료분사기의 가솔린, M85, E85 및 LPG 분무 계측)

  • Kim, S.S.
    • Journal of Power System Engineering
    • /
    • v.16 no.6
    • /
    • pp.5-10
    • /
    • 2012
  • Spray structures and penetration lengths of Gasoline, M85, E85, and LPG by a GDI 6-hole fuel injector were examined in a constant volume chamber. The chamber pressure was controlled at 0.1 MPa and 0.9 MPa. The effects of fuel injection pressure and chamber pressure on the spray structures and penetration lengths were investigated using the 2-dimensional Mie scattering technique. It was found that the sprays developed linearly till ASOI 1.7ms after start of injection and vortices were happened around jets on the way of spray development. And the high chamber pressure, 0.9 MPa kept the fuel sprays development down and the penetration length was reduced to about 55% compared with that of 0.1 MPa. In additions high pressure of fuel injection, 12 MPa increased the spray penetration length more about 7~10% than that of 7 MPa.

Combustion Characteristics of Stratified Mixture in a Constant Volume Combustion Chamber with Sub-chamber (II) (부실식 정적연소실내 층상혼합기의 연소특성(II))

  • Kim, B.S.;Kwon, C.H.;Ryu, J.I.
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.3 no.5
    • /
    • pp.122-134
    • /
    • 1995
  • The present study was investigated combustion characteristics of methane-air mixtures at stratified charge in a constant volume combustion chamber. The main results obtained from this study can be summarized as follows. In case of ${\phi}_s=1.0$, total burning times greatly affected rather than initial time of pressure increase and maximum combustion pressure. In case of ${\phi}_t=1.0$, initial time of pressure increase and total burning times were affected considerably in comparison with the case of ${\phi}_s=1.0$. Also, even the very lean mixture which total equivalence ratio is ${\phi}_t=0.69$(${\phi}_s=1.0$, ${\phi}_m=0.65$), by changing configuration of the critical passage-hole and using a stratified mixture, it is possible to decrease substantially the initial time of pressure increase. total burning times and NOx concentration without deteriorating combustion characteristics such as maximum combustion pressure, rate of heat release etc. in comparison with the use of single chamber(in case of ${\phi}=1.0$) only. Specifically, our trends were revealed remarkably in the case of Type D which is reduced a flame contact area of sub-chamber side of the passage-hole.

  • PDF

Effects of a Flow Guide on the Arcing History in a Thermal Puffer Plasma Chamber (유동 가이드가 열파퍼 플라즈마 챔버의 아크현상 이력에 미치는 영향)

  • Lee, Jong-Chul;Kim, Youn-Jea
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.31 no.10
    • /
    • pp.832-839
    • /
    • 2007
  • The geometry and dimensions of an expansion chamber are decisive factors in thermal puffer plasma chamber designs. Because they together dominate the temperature and speed at which the cooling gas from the chamber flows back through a flow channel to the arcing zone for the successful interruption of fault currents. In this study, we calculated the flow and mass transfer driven by arc plasma, and investigated the effects of a flow guide installed inside a thermal puffer plasma chamber. It is found that the existing cold gas of the chamber mixes with hot gases entrained from the arcing zone and is subjected to compression due to pressure build-up in the chamber. The pressure build-up with the flow guide is larger than that without due to a vortex which rotates clockwise around the chamber center. By the reverse pressure gradient, the mixing gas of the chamber flows back out for cooling down the residual plasma near current zero. In the case with the flow guide, the temperature just before current zero is lower than that without, and the Cu concentration with high electrical conductivity is also less than that without the flow guide.

Development of Cardiovascular Simulator with Control of Pulse Pressure for Pulse Wave Study (맥압조절이 가능한 맥파 연구용 심혈관계 시뮬레이터 개발)

  • Lee, Ju-Yeon;Kim, Jeauk U.;Shin, Sang-Hoon
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.10
    • /
    • pp.204-209
    • /
    • 2014
  • The purpose of this study is to produce a simulator that can control a pulse pressure keeping the pulse wave transfer phenomenon. For this, the elastic tube is combined with a compliance chamber for the vessel part. The simulator is comprised of four parts; a pressure generation part with slider-crank mechanism, a vessel part with resistance controller, water reservoirs and a measurement part. The changes of waveform depending on the location of a chamber is examined to determine the position of a chamber. The effects of a chamber on the pulse pressure and the pulse wave transfer phenomenon were investigated. It showed that the simulator which had the chamber in upstream of tube produces pressure wave, being more similar to the clinical waveform than in downstream of tube. Furthermore, with the chamber, the simulator generates a pulse pressure, being more similar to the normal physiological values than without one. The chamber had little effect on the pulse wave velocity.

A Study on Combustion Characteristic with Chamber Pressure in Hybrid Rocket (하이브리드 로켓에서의 압력에 따른 연소특성에 관한 연구)

  • Cho, Jung-Tae;Kim, Gi-Hun;Lee, Jung-Pyo;Kim, Hak-Chul;Park, Seon-Woo;Park, Joon-Hyng;Han, Hee-Soo;Hwang, Jae-Woong;Moon, Hee-Jang;Sung, Hong-Gye;Kim, Jin-Kon
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.243-246
    • /
    • 2008
  • The combustion characteristic of solid fuel with chamber pressure were experimentally studied in hybrid combustion. This paper was experimental confirmed whether solid fuel affected not only oxidizer mass flux but also chamber pressure. Poly-Ethylene(PE) was used as fuel, GOX was used as oxidizer. Chamber pressure was controled by nozzle throat diameter 6mm and 9mm. In low oxidizer mass flux, solid fuel regression rate was affected not only oxidizer mass flux but also chamber pressure. As well, the regression rate increase as chamber pressure increase with same oxidizer mass flux.

  • PDF

A Study on the Discharge Pressure Ripple Characteristics of the Pressure Unbalanced Vane Pump (압력 비평형형 유압 베인 펌프의 토출 압력 맥동 특성 연구)

  • Jang, Joo-Sup
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.26 no.4
    • /
    • pp.55-63
    • /
    • 2009
  • This paper reports on the theoretical and experimental study of the pressure ripples in a pressure unbalanced type vane pump which have widespread use in industry. Because they can infinitely vary the volume of the fluid pumped in the system by a control. Pressure ripples occur due to the flow ripples induced by geometry of side plate, leakage flow, reverse flow from the outlet volume produced by pressure difference between pumping chamber and outlet volume when the pumping chamber connected with the outlet volume. In this paper, we measured the pressure variation of a pumping chamber, reaction force on a cam ring, the mathematical model for analyzing the pressure ripples which included vane detachment and fluid inertia effects in notch area has been presented, and was applied to predict the level and the wave form of the pressure ripples according to operating conditions.