• Title/Summary/Keyword: Pressure Cell

검색결과 1,802건 처리시간 0.037초

Numerical Analysis of the Incident Ion Energy and Angle Distribution in the DC Magnetron Sputtering for the Variation of Gas Pressure

  • Hur, Min Young;Oh, Sehun;Kim, Ho Jun;Lee, Hae June
    • Applied Science and Convergence Technology
    • /
    • 제27권2호
    • /
    • pp.26-29
    • /
    • 2018
  • The ion energy and angle distributions (IEADs) in the DC magnetron sputtering systems are investigated for the variation of gas pressure using particle-in-cell simulation. Even for the condition of collisionless ion sheath at low pressure, it is possible to change the IEAD significantly with the change of gas pressure. The bombarding ions to the target with low energy and large incident angle are observed at low pressure when the sheath voltage drop is low. It is because the electron transport is hindered by the magnetic field at low pressure because of few collisions per electron gyromotion while the ions are not magnetized. Therefore, the space charge effect is the most dominant factor for the determination of IEADs in low-pressure magnetron sputtering discharges.

Effect of the Holding Temperature and Vacuum Pressure for the Open Cell Mg Alloy Foams

  • Yue, Xue-Zheng;Hur, Bo-Young
    • 한국재료학회지
    • /
    • 제22권6호
    • /
    • pp.309-315
    • /
    • 2012
  • Metal foam has many excellent properties, such as light weight, incombustibility, good thermal insulation, sound absorption, energy absorption, and environmental friendliness. It has two types of macrostructure, a closed-cell foam with sealed pores and an open-cell foam with open pores. The open-cell foam has a complex macrostructure consisting of an interconnected network. It can be exploited as a degradable biomaterial and a heat exchanger material. In this paper, open cell Mg alloy foams have been produced by infiltrating molten Mg alloy into porous pre-forms, where granules facilitate porous material. The granules have suitable strength and excellent thermal stability. They are also inexpensive and easily move out from open-cell foamed Mg-Al alloy materials. When the melt casting process used an inert gas, the molten magnesium igniting is resolved easily. The effects of the preheating temperature of the filler particle mould, negative pressure, and granule size on the fluidity of the open cell Mg alloy foam were investigated. With the increased infiltration pressure, preheat temperature and granule sizes during casting process, the molten AZ31 alloy was high fluidity. The optimum casting temperature, preheating temperature of the filler particle mould, and negative pressure were $750^{\circ}C$, $400-500^{\circ}C$, and 5000-6000 Pa, respectively, At these conditions the AZ31 alloy had good fluidity and castability with the longest infiltration length, fewer defects, and a uniform pore structure.

Effects of Hyperbaric Pressure on Cellular Morphology, Proliferation and Protein Expression of Jurkat Cell

  • Oh, Eun-Ha;Oh, Sang-Nam;Im, Ho-Sub;Lee, Joo-Hyun;Kim, Jin-Young;Moon, Joo-Hee;Hong, Eun-Young;Kim, Yang-Hee;Yang, Min-Ho;Lim, Yong-Chul;Park, Sun-Young;Lee, Eun-Il;Sul, Dong-Geun
    • Molecular & Cellular Toxicology
    • /
    • 제1권2호
    • /
    • pp.116-123
    • /
    • 2005
  • The application of high pressure on cellular morphology, proliferation and protein expression of Jurkat cells (human T lymphocyte cell line) has been extensively investigated. In the present study, we manufactured a novel pressure chamber that modulates 5% $CO_{2}$, temperature and pressure (up to 3 ATA). Jurkat cells was incubated 2 ATA pressure and analyzed cellular morphology and growth using an electron microscopy and MTT assay. The cells showed the morphological changes in the cell surface, which appeared to cause a severe damage in cell membrane. The growth rate of the cells under 2 ATA pressure decreased as cultured time got increased. Furthermore, a long term exposure of high pressure on Jurkat cells may act as one of the important cellular stresses that leads to inducing cell death. Cellular proteomes were separated by 2-dimensional electrophoresis with pH 3-10 ranges of IPG Dry strips. And many proteins showed significant up-and-down expressions with hyperbaric pressure. Out of all, 10 spots were identified significantly using matrix-assisted laser desorption/ionization-time of fight (MALDI-TOF) mass spectrometry. We and found that 9 protein expressions were decreased and one protein, heat shock protein HSP 60, was increased in Jurkat cells under 2 ATA. Identified proteins were related to lipid metabolism and signal transduction.

Effects of Reynolds Number and Shape of Manifold on Flow Rate in Separator for Polymer Electrolyte Fuel Cell (ICCAS 2004)

  • Huang, Chaii;Ozawa, Yoshikuni;Ennoji, Hisayuki;Iijima, Toshio
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2004년도 ICCAS
    • /
    • pp.68-71
    • /
    • 2004
  • Recently, a great deal of research and development of a fuel cell have been carried out to solve problems on the drain of fossil fuel, air pollution and global warning. In order to improve the efficiency of a fuel cell, it is necessary to clarify the flow in separator. In this study, distributions of velocity flow rate and pressure, and streamlines are examined in detail from numerical analysis with CFD code. In the experiment the distribution of flow rate is measured and flow in the each grooves of the separator is visualized by dye method changing Reynolds number. Furthermore, effects of size of the inlet and outlet manifolds and shape of ribs near the inlet outlet on the distributions of flow and pressure are examined.

  • PDF

연료전지용 터보 공기압축기의 설계 및 시험평가 (Design and Experimental Study on a Turbo Air Compressor for Fuel Cell Applications)

  • 최재호
    • 한국수소및신에너지학회논문집
    • /
    • 제19권1호
    • /
    • pp.26-34
    • /
    • 2008
  • This study presents an aerodynamic design and an experimental performance test of a turbo air compressor consisted of mixed-flow impeller and curved diffuser for the PEM fuel cell vehicle application. Many studies compare the efficiency, cost or noise level of high-pressure and low-pressure operation of PEM fuel cell systems. Pressure ratio 2.2:1 is considered as design target The goal of compressor design is to enlarge the flow margin of compressor from surge to choke mass flow rate to cover the operational envelope of FCV. Large-scale rig test is performed to evaluate the compressor performance and to compare the effects of compressor exit pipe volume to stall or surge characteristics. The results show that the mixed-flow compressor designed has large flow margin, and the flow margin of compressor configuration with small exit volume is larger than that with large exit volume.

고분자 연료전지 스택에서 질소 크로스오버 특성에 관한 연구 (Characterization of Nitrogen Gas Crossover in PEM Fuel Cell Stacks)

  • 백경돈;김민수
    • 대한기계학회논문집B
    • /
    • 제33권3호
    • /
    • pp.207-214
    • /
    • 2009
  • Crossover of nitrogen from cathode to anode is inevitable in typical membranes used in PEM fuel cells. This crossovered nitrogen normally accumulates in the hydrogen recirculation system at anode side channels. Excessive buildup of nitrogen in the anode side lowers the relative hydrogen concentration and finally affects the performance of fuel cell stack. So it is very important to analysis the nitrogen gas crossover at various operating conditions. In this study, characterization of nitrogen gas crossover in PEM fuel cell stack was investigated. The mass spectroscopy (MS) has been applied to measure the amount of the crossovered nitrogen gas at the anode exit. Results show that nitrogen gas crossover rate was affected by current density, anode and cathode stoichiometric ratio and operating pressure. Current density, anode stoichiometric ratio and anode operating pressure do not affect nitrogen crossover rate but anode exit concentration of nitrogen. Cathode pressure and stoichiometric ratio largely affect the nitrogen crossover rate.

연료전지자동차의 고압수소저장시스템 신뢰성 평가 (The Evaluation of Reliability for the High Pressure Hydrogen Storage System of Fuel Cell Vehicle)

  • 장규진;최영민;안병기;임태원
    • 한국수소및신에너지학회논문집
    • /
    • 제19권4호
    • /
    • pp.266-275
    • /
    • 2008
  • The performance improvement of each part for durability, safety and cost of high pressure storage system for fuel cell vehicle has been focused so far. However, for the mass production of fuel cell vehicle, it is necessary to evaluate durability and safety in system module and vehicle level. The test procedure to evaluate vibration and collision safety of high pressure hydrogen storage system for the fuel cell vehicle is established and its reliability is verified.

연료전지자동차의 고압수소저장시스템 국부화재 신뢰성 평가 (I) (The Evaluation of Fire Reliability for the High Pressure Hydrogen Storage System of Fuel Cell Vehicle (I))

  • 김상현;최영민;황기호;심지현;황인철;임태원
    • 한국수소및신에너지학회논문집
    • /
    • 제22권4호
    • /
    • pp.520-526
    • /
    • 2011
  • In recent years, it is very important that hydrogen storage system is safe for user in any circumstances in case of crash and fire. Because the hydrogen vehicle usually carry high pressurized cylinders, it is necessary to do safety design for fire. The Global Technical Regulation (GTR) has been enacted for localized and engulfing fire test. High pressure hydrogen storage system of fuel cell electrical vehicles are equipped with Thermal Pressure Relief Device (TPRD) installed in pressured tank cylinder to prevent the explosion of the tank during a fire. TPRDs are safety devices that perceive a fire and release gas in the pressure tank cylinder before it is exploded. In this paper, we observed the localized and engulfing behavior of tank safety, regarding the difference of size and types of the tanks in accordance with GTR.

세포 내 칼슐 농도의 변화에 따른 간헐적 정수압이 세포 부착력에 미치는 영향 (Contribution of intermittent hydrostatic pressure to the cell adhesive forces throught the changes in intracelluar $Ca^{2+}$ concentration)

  • 김동화;김영직;신지원;신정욱
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2008년도 추계학술대회A
    • /
    • pp.1580-1581
    • /
    • 2008
  • We investigated the effects of intermittent hydrostatic pressure with various duration of resting period on changes in calcium ($Ca^{2+}$) concentration and adhesive forces of cells on substrates. The quantitive adhesive forces of cells were measured under various resting periods. When the pressure applied to the cells, the concentration of $Ca^{2+}$ increased. Under intermittent hydrostatic pressure, the concentration of $Ca^{2+}$ was maintained under a resting period of 15 min, while it was not decreased with other resting periods of less than 15 min. With a resting period of 15 min, the magnitudes of adhesive forces were significantly increase. In addition, the adhesive forces were measured with and without $Ca^{2+}$ chelating agents to evaluate the effect of $Ca^{2+}$ on cell adhesiveness. When $Ca^{2+}$ ions were chelated, the adhesive forces dramatically decreased, even under intermittent hydrostatic pressure. We conclude that $Ca^{2+}$ plays an crucial role in modulating the adhesive forces of cells, and that the concentration of $Ca^{2+}$ can be increased by intermittent hydrostatic stimuli.

  • PDF

경사로 오르기 동안 슬관절 굴곡각도와 족저압의 특성 비교 (Characteristics of Knee Joint Flexion Angle and Foot Pressure according Slope Climbing)

  • 오태영;송현주;이슬기;정예지;임종수
    • 한국콘텐츠학회논문지
    • /
    • 제10권2호
    • /
    • pp.268-276
    • /
    • 2010
  • 본 연구의 목적은 경사로를 오르는 동안 슬관절 굴곡각도와 족저압의 차이를 각각 다른 경사도에 따라 분석하고자 하는 것이다. 24명의 건강한 성인 참가자들에게 각각의 경사도($0^{\circ},\;3^{\circ},\;6{\circ},\;9^{\circ}$)를 걷게 한 후, Parotec system을 이용하여 족저압을 측정하였으며, 걷는 모습을 캠코더로 녹화 한 후 Dartfish system을 이용하여 슬관절 각도를 분석하였으며, 수집된 데이터는 SPSS/PC 통계 프로그램을 이용하여 일원배치분산분석으로 분석하였다. 결과는 각 경사로에 따라 슬관절 굴곡 각도는 통계학적으로 유의한 차이가 나타났으며, 족저압은 좌측 하지의 발뒤꿈치 외측 부위(1번 감지기), 중족부 내측 부위(9번 감지기), 전족부 내측 부위(15번, 16번 감지기), 그리고 우측 하지에서는 발뒤꿈치 외측 부위(3번 감지기)에서 통계학적으로 유의한 차이를 보였다. 슬관절 각도가 $10{\sim}20^{\circ}$ 사이에서 발뒤꿈치 외측 부위 및 내측 부위의 족저압이 통계학적으로 유의하게 높게 나타났다.