Browse > Article
http://dx.doi.org/10.5757/ASCT.2018.27.2.26

Numerical Analysis of the Incident Ion Energy and Angle Distribution in the DC Magnetron Sputtering for the Variation of Gas Pressure  

Hur, Min Young (Department of Electrical and Computer Engineering, Pusan National University)
Oh, Sehun (Department of Electrical and Computer Engineering, Pusan National University)
Kim, Ho Jun (Memory Thin Film Technology Team, Samsung Electronics)
Lee, Hae June (Department of Electrical and Computer Engineering, Pusan National University)
Publication Information
Applied Science and Convergence Technology / v.27, no.2, 2018 , pp. 26-29 More about this Journal
Abstract
The ion energy and angle distributions (IEADs) in the DC magnetron sputtering systems are investigated for the variation of gas pressure using particle-in-cell simulation. Even for the condition of collisionless ion sheath at low pressure, it is possible to change the IEAD significantly with the change of gas pressure. The bombarding ions to the target with low energy and large incident angle are observed at low pressure when the sheath voltage drop is low. It is because the electron transport is hindered by the magnetic field at low pressure because of few collisions per electron gyromotion while the ions are not magnetized. Therefore, the space charge effect is the most dominant factor for the determination of IEADs in low-pressure magnetron sputtering discharges.
Keywords
Magnetron sputtering; Particle-in-cell simulation; Ion energy distribution;
Citations & Related Records
연도 인용수 순위
  • Reference
1 T. Makabe and T. Yakisawa, Mater. Sci. Forum 555, 65-71 (2007).   DOI
2 Z. Hua-Yu and M. Zong-Xin, Chinese Phys. B 17, 1475-1479 (2008).   DOI
3 V. K. Decyk and T. V. Singh, Comput. Phys. Comm. 185, 708-719 (2014).   DOI
4 C. K. Birdsall and A. b. Langdon, Plasma Physics vis Computer Simulation, Taylor & Francis Group (2005).
5 V. Vahedi and M. Surendra, Comput. Phys. Comm. 87, 179-198 (1995).   DOI
6 P. Sigmund, Phys. Rev. 184, 383-416 (1969).   DOI
7 M. P. Seah and T. S. Nunney, J. Phys. D: Appl. Phys. 43, 253001 (2010).   DOI
8 R. Behrisch and W. Eckstein, Sputtering by particle Bombardment, Springer (2007).
9 Y. Yamamura and H. Tawara, Atom. Data Nucl. Data 62, 149-253 (1996).   DOI
10 V. Vahedi and G. DiPeso, J. Comput. Phys. 131, 149-163 (1997).   DOI
11 S. Kuroiwa, T. Mine, T. Yakisawa and T. Makabe, J. Vac. Sci. Technol. B 23, 2218-2221 (2005).   DOI
12 I. Kolev and A. Bogaerts, IEEE T. Plasma Sci. 34, 886-894 (2006)   DOI
13 P. J. Kelly and R. D. Arnell, Vaccum 56, 159-172 (2000).   DOI
14 W. Gao, Z. Li, Ceram. Int. 30, 1155-1159 (2004).   DOI
15 K. Sarakinos, J. Alami, and S. Konstantinidis, Surf. Coat. Tech. 204, 1661-1684 (2010).   DOI
16 K. Ellmer and T. Welzel, J. Mater. Res. 27, 765-779 (2012).   DOI
17 S. H. Jeong and J. H. Boo, Thin Solid Films 447-448, 105-110 (2004).
18 S. Mraz and J. M. Schneider, J. Appl. Phys. 100, 023503 (2006).   DOI
19 M.-J. Keum and J.-H. Han J. Korean Phys. Soc. 53, 1580-1583 (2008).   DOI
20 H. C. Nguyen, T. T. Trinh, T. Le, C. V. Tran, T. Tran, H. Park, V. A. Dao, and J. Yi, Semicond. Sci. Technol. 26, 105022 (2011).   DOI
21 J. P. Verboncoeur, Plasma, Phys. Controlled Fusion 47, A231 (2005).   DOI
22 C. H. Shon and J. K. Lee, Appl. Surf. Sci. 192, 258-269 (2002).   DOI
23 C. H. Shon, J. K. Lee, H. J. Lee, Y. Yang, and T. H. Chung, IEEE T. Plasma Sci. 26, 1635-1644 (1998).   DOI