• Title/Summary/Keyword: Pressing technique

Search Result 107, Processing Time 0.024 seconds

Development of Evaluation Criteria for the Forest Garden

  • Hong, Kwang-pyo;Jin, Hye-young;LEE, Hyuk-jae
    • International Journal of Advanced Culture Technology
    • /
    • v.8 no.1
    • /
    • pp.113-119
    • /
    • 2020
  • Development of forest garden for city dwellers utilizing green space within urban area is nowadays highly regarded as a means to invigorate city and to raise living standard for city dwellers. Thus, development of forest garden has become pressing and important agenda for city governments. Promoting forest garden to solve many environmental and social issues city governments face today requires evaluation criteria to determine whether target green space is suitable to serve as forest garden. In this respect, we believe that evaluation of values of forest garden from previous studies can serve as foundation for developing evaluation index for forest garden. Thus, we aimed to develop evaluation criteria for values of forest garden. First, various evaluation criteria collected from previous studies were assessed by expert groups. Then, the result was studied through AHP technique and we developed evaluation criteria for forest garden based on such result. Especially, evaluation criteria were divided into main and sub-levels for more detailed and precise evaluation system.

Fabrication of a Complex-Shaped Silicon Nitride Part with Aligned Whisker Seeds Using LOM Technique

  • Park, Dong-Soo;Cho, Byung-Wook
    • Journal of the Korean Ceramic Society
    • /
    • v.40 no.10
    • /
    • pp.931-935
    • /
    • 2003
  • A complex-shaped part was successfully fabricated by Laminate Object Manufacturing (LOM) technique using silicon nitride tape with aligned silicon nitride whisker seeds. The ceramic tape was cut using a commercial cutting plotter according to the cross section drafts generated by slicing a 3-D model, and then the tapes were stacked sequentially. In order to improve adhesion between the tapes, stacking was performed under vacuum. After binder burnout, the part was encapsulated using latex emulsion and was cold isostaically pressed under 250 ㎫. It was sintered to 98.5% TD at 2148 K for 4 h under 2 ㎫ nitrogen pressure.

Determination of Mechanical Properties of Equal Channel Angular Pressed Aluminum Alloys in Nano-surface Region (나노표면 영역에서의 ECAP 변형된 알루미늄합금의 기계적 물성변화 측정)

  • An, SeongBin;Kim, ChungSeok
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.32 no.3
    • /
    • pp.113-117
    • /
    • 2019
  • The effects of severe plastic deformation and heat treatment on the mechanical properties of Al 5052 and 6005 alloys were investigated using the metallurgical technique and nano-indentation technique in nano-surface region. Equal channel angular pressing (ECAP) was used to apply severe plastic deformation to the aluminum alloys in order to obtain fine grain sized materials. The elastic modulus was measured and interpreted in relation to the metallurgical observation. The elastic modulus increased after ECAP process due to evolution of the fine grains. However, the elastic modulus decreased after heat treatment due to generation of coarsened precipitates on the grain boundaries.

Study about shear bond strength of zirconia core used in dental prosthesis (치과 보철물에 사용되는 지르코니아 코어의 전단결합강도에 관한 연구)

  • Sim, Ji-Young;Kim, Jae-Hong;Kim, Woong-Chul;Kim, Hae-Young;Kim, Ji-Hwan
    • Journal of Technologic Dentistry
    • /
    • v.33 no.4
    • /
    • pp.299-306
    • /
    • 2011
  • Purpose: This study aimed to investigate the shear bond strength by manufacturing the veneering porcelain on the IPS e.max $ZirCAD^{(R)}$ zirconia core, using the layering technique and heat-pressing technique, and to evaluate the clinical stability by comparing to the conventional metal ceramic system. Methods: The Schmitz-Schulmeyer test method was used to evaluate the core-veneer shear bond strength of zirconia core ceramic(IPS e.max $ZirCAD^{(R)}$) and their manufacture recommended two veneering ceramic systems(IPS e.max $ceram^{(R)}$, IPS e. max $ZirPress^{(R)}$). A metal ceramic system(Bellabond $plus^{(R)}$, VITA $VM13^{(R)}$) was used as a control group for the two all ceramic system test groups. The maximum loading and shear bond strength was measured. The average shear strength(MPa) was analyzed with the one-way ANOVA and the Tukey's test(${\alpha}$=.05). The fracture specimens were examined using Microscope to determine the failure pattern. Results: The mean shear bond strengths(SD) in MPa were MBSB control 43.62(2.13); ZBSB 18.65(1.76); ZPSB 18.89(1.54). The shear strengths of the zirconia cores were not significantly different(P>.05). Microscope examination showed that zirconia specimens presented mixed failure, and base metal alloy specimens showed adhesive failure. Conclusion: There was no siginificant different between the layering technique and the heat pressing technique in the veneering methods on the zirconia cores. None of the zirconia core and veneering ceramics could attain the high bond strength values of the metal ceramic combination.

A Study on the Micro-mechanical Characteristics of Titanium Metal Matrix Composites (티타늄 금속기 복합재료의 미시-기계적 특성에 관한 연구)

  • 하태준;김태원
    • Composites Research
    • /
    • v.17 no.1
    • /
    • pp.47-54
    • /
    • 2004
  • Vacuum hot pressing has been used for the development of titanium metal matrix composites using foil-fiber-foil technique. Subsequent micro-mechanical characteristics of the composites are then investigated by means of several experimental methods. The levels of consolidation, together with mechanism based failure processes of the materials have been analyzed by employing a thermo-acoustic emission technique. As shown by the results, fiber strength degradation occurs during the consolidation, and particularly residual stresses results from the thermal expansion mismatch between fiber and matrix materials during cooling process are incorporated in the changes of mechanical properties of the finished products. In industrial applications, both qualitative and quantitative evaluations of the material-mechanical characteristics are particularly important, and therefore must be included in process development. The present paper represents a methodology by which this can be achieved.

Effect of Processing Variables on the Texture of Ni Substrate for YBCO Coated Conductor (YBCO 박막선재용 Ni 기판의 집합도에 미치는 제조공정 변수효과)

  • 지봉기;임준형;이동욱;주진호;나완수;김찬중;홍계원
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.16 no.10
    • /
    • pp.938-945
    • /
    • 2003
  • We fabricated Ni-substrate for YBCO coated conductors and evaluated the effects of pressing and annealing temperature and time on texture. Ni substrate was fabricated by powder metallurgy technique and compacts were prepared by applying uniaxial or isostatic pressure. The texture of substrate made by applying cold isostatic pressure (CIP) was stronger than that by uniaxial pressure which we attribute to the fact that the CIP method provided higher density and more uniform density distribution. It was observed that the substrate annealed at 400 C showed both retained texture and recrystallized texture. On the other hand, the texture of substrate significantly improved at annealing temperature above 500 C, forming strong 4-fold symmetry, [111] II ND texture, and FWHM of 9∼10 . It is to be noted that the degree of texture was almost independent of annealing temperature (500∼1000 C) and annealing time(1∼54 min, at 1000 C). EBSD and AFM analysis indicated that 99% of grain boundaries was low angle grain boundary and RMS was approximately 3 nm, respectively. Development of strong cube texture and high fraction of low angle grain boundary of Ni-substrate made by powder metallurgy technique in our study is considered to be suitable for the application of YBCO coated conductors.

A STUDY ON THE MICROSTRUCTURE OF IPS EMPRESS CERAMICS ACCORDING TO THE HEAT TREATMENT AND SPRUE TYPE (주입선 및 열처리에 따른 IPS Empress 도재의 미세구조에 관한 연구)

  • Dong, Jin-Keun;Oh, Sang-Chun
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.36 no.5
    • /
    • pp.772-785
    • /
    • 1998
  • This study was undertaken to clarify the microstructure of the different IPS Empress ingots by etching and to observe the change of leucite crystal structure according to subsequent heat treatment and the crystal distribution according to sprue types(${\phi}2.8mm$, single sprue; ${\phi}1.8mm$, double sprue) by scanning electron microscopy. IPS Empress T1, O1 ingots used for staining technique, and Dentin(A2) ingots used for layering technique were selected for this study. To observe the microstructures of these ingots before pressing, the specimens were prepared in splinters($3{\times}3{\times}3mm$) taken from the original ingots. And to estimate crystal distribution and microstructural change by sprue type and subsequent heat treatment. the specimens($3{\times}3{\times}3mm$) were heat-pressed through the two types of sprues with different diameters and numbers, and all specimens were fired according to the recommended firing schedule. The observed surface was ground with waterproof papers($#800{\sim}#1800$) on the grind polisher and was cleaned ultrasonically. All specimen were etched with 0.5% hydrofluoric acid. After etching, the surface was treated by ion sputter coating for SEM observation at an accelerating voltage of 20kV. In all specimens, the central area of ground surface was observed because there was less difference in microstructure between the peripheral area and the central area. The results were as follows ; 1. In the microstructure according to the ingot type, there was a wide difference between the staining (T1,O1) and layering(Dentin A2) ingots, but there was not a considerable difference between the T1 ingot and the O1 ingot for staining technique. 2. In all specimens, the crystal dispersion of IPS Empress ceramic using double sprue was significantly more scattered than that of IPS Empress ceramic using single sprue. The degree of scattering was strongest in the Dentin(A2) specimen and weakest in the O1 ingot. 3. In the microstructural change according to the subsequent heat treatment, all of ingots had some microcracks in the inside of the leucite crystal and the glass matrix after pressing. The inner splinters of the leucite crystal became smaller, and more microcracks occurred in the glass matrix due to increasing heat treatment times. 4. The size of leucite crystals varied from $1{\mu}m\;to\;5{\mu}m$. The mean size of mature crystals was about $5{\mu}m$. The form of the crystal was similar to a circle when it was smaller and similar to an ellipse when it was larger.

  • PDF

A Test Scenario Generation Technique based on Task Information for Interaction Testing among Android Components (안드로이드 컴포넌트 상호작용 테스팅을 위한 태스크 정보기반 테스트 시나리오 생성 기법)

  • Baek, Tae-San;Lee, Woo Jin
    • Journal of KIISE
    • /
    • v.44 no.6
    • /
    • pp.595-600
    • /
    • 2017
  • Android applications are composed of one or more components. The components within an application or several applications may interact with each other primarily through intents. Such interactions may cause security and reliability issues such as broadcast theft, activity hijacking, and intent spoofing. These problems need to be resolved through testing techniques using various interaction test scenarios before an application gets launched. However, with the existing test scenario generation approach, some infeasible test scenarios may be generated since they do not consider the re-execution order based on activity setting when pressing the back button. This paper proposes a test case generation technique which removes infeasible interaction paths by utilizing the activity stack information.

The Measuring Methodology of Friction Coefficient between Ice and Ship Hull (빙-선체 마찰계수 측정 기법)

  • Cho, Seong-Rak;Chun, Eun-Jee;Yoo, Chang-Soo;Jeong, Seong-Yeob;Lee, Chun-Ju
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.48 no.4
    • /
    • pp.363-367
    • /
    • 2011
  • In this paper, friction coefficients between ices and model ship were studied in order to predict the resistance of ice. The friction coefficient is a dimensionless scalar value which describes the ratio of the force of friction between two bodies and the force pressing them together. The coefficient of friction depends on the materials, roughness on surface, lubrication, etc. We tested and analyzed the friction coefficient for the development of the test methodology. The friction coefficient for ice model test is very dominant to predict the ship performance, so every ice tank uses their own painting technique. In this study, the friction coefficient with changing the moving speed of ice was studies by using a flat plates which were made by the MOERI's paining technique and the basic research for the developing the paining methodology in the MOERI ice model basin was carried out.

Improvement of Mechanical Properties of P/M Processed $2XXX Al-SiC_w$ Composites ($2XXX Al-SiC_w$ 복합재료의 분말야금 제조와 기계적 성질 향상 연구)

  • 신기삼
    • Journal of Powder Materials
    • /
    • v.2 no.3
    • /
    • pp.238-246
    • /
    • 1995
  • The purpose of this study is to establish powder metallurgy (P/M) fabrication processes for high performance 2XXX Al composites reinforced with SiC whiskers. Rapidly solidified 2XXX Al powders produced by commercial atomization technique were mixed with SiC whiskers. The results of mixing processes indicated that fluidized zone mixing technique was considerably effective for the large scale production of the mixture of Al powders and whiskers. In order to consolidate these $Al-SiC_w$ mixtures into $Al-SiC_w$ composite billets, a vacuum hot press was set up, and hot processing variables were investigated. Using the hot pressing temperature of $620^{\circ}C$ under the pressure of 50 MPa, good quality $Al-SiC_w$ composite billets having relatively homogeneous microstructure and sound Al/sic interfacial bonding were obtained. Composite billets were then extruded to bars having relatively homogeneous microstructures at the extrusion temperature of 450~500$^{\circ}C$ under the extrusion pressure of 700~ 1000 MPa. Mechanical properties of the extruded bars were found to be comparable with those of the composite processed by Advanced Composite Materials Corp. To improve mechanical properties of the composites, elimination of coarse intermetallic compounds, uniform distribution of reinforcements, and minimization of whisker breakage are suggested.

  • PDF