DOI QR코드

DOI QR Code

Determination of Mechanical Properties of Equal Channel Angular Pressed Aluminum Alloys in Nano-surface Region

나노표면 영역에서의 ECAP 변형된 알루미늄합금의 기계적 물성변화 측정

  • 안성빈 (조선대학교 첨단소재공학과) ;
  • 김정석 (조선대학교 재료공학과)
  • Received : 2019.05.08
  • Accepted : 2019.05.20
  • Published : 2019.05.30

Abstract

The effects of severe plastic deformation and heat treatment on the mechanical properties of Al 5052 and 6005 alloys were investigated using the metallurgical technique and nano-indentation technique in nano-surface region. Equal channel angular pressing (ECAP) was used to apply severe plastic deformation to the aluminum alloys in order to obtain fine grain sized materials. The elastic modulus was measured and interpreted in relation to the metallurgical observation. The elastic modulus increased after ECAP process due to evolution of the fine grains. However, the elastic modulus decreased after heat treatment due to generation of coarsened precipitates on the grain boundaries.

Keywords

OCRHB6_2019_v32n3_113_f0001.png 이미지

Fig. 1. Block diagram of TriboScope for nanomechanical test system.

OCRHB6_2019_v32n3_113_f0002.png 이미지

Fig. 2. Microstructure of the solution treated and ECAPed aluminum 5052 alloy.

OCRHB6_2019_v32n3_113_f0003.png 이미지

Fig. 3. Microstructure of the ECAPed aluminum 6005 alloy.

OCRHB6_2019_v32n3_113_f0004.png 이미지

Fig. 4. (a) Indentation load-displacement curves for solution and ECAPed Al 5052 alloy. (b) Typical AFM topograph of ECAPed Al 5052 corresponding to the indentation curve shown in (a).

OCRHB6_2019_v32n3_113_f0005.png 이미지

Fig. 5. Reduced elastic modulus of aluminum 5052 and 6005 alloy; (a) Al 5052 alloy and (b) Al 6005 alloy.

Table 1. Chemical composition of aluminum alloys (wt.%)

OCRHB6_2019_v32n3_113_t0001.png 이미지

References

  1. H. Akamatsu, T. Fujinami, Z. Horita and T. G. Langdon : Scripta Mater., 4 (2001) 759.
  2. E. A. El-Danaf, M. S. Soliman, A. A. Almajid and M. M. El-Rayes : Mater. Sci. Eng. A, 458 (2007) 226. https://doi.org/10.1016/j.msea.2006.12.077
  3. V. M. Segal : Mater. Sci. Eng. A, 197 (1995) 157. https://doi.org/10.1016/0921-5093(95)09705-8
  4. S. Xu, G. Zhao, G. Ren and X. Ma : Comp. Mater. Sci., 44 (2008) 247. https://doi.org/10.1016/j.commatsci.2008.03.032
  5. R. B. Figueiredo and T. G. Langdon : Mater. Sci. Eng. A, 501 (2009) 105. https://doi.org/10.1016/j.msea.2008.09.058
  6. B. J. Singh, A. Sarkar, G. Sharma, V. Basavaraj and J. K. Chakravartty : Mater. Sci. Forum, 702-703 (2012) 89. https://doi.org/10.4028/www.scientific.net/MSF.702-703.89
  7. C. Z. Xu, Q. J. Wang, M. S. Zheng, J. W. Zhu, J. D. Li, M. Q. Huang, Q. M. Jia and Z. Z. Du : Mater. Sci. Eng. A, 459 (2007) 303. https://doi.org/10.1016/j.msea.2007.01.105
  8. K. Matoy, H. Schonherr, T. Detzel, T. Schoberl, R. Pippan, C. Motz and G. Dehm : Thin Solid Film, 518 (2009) 247. https://doi.org/10.1016/j.tsf.2009.07.143
  9. Y. Gaillard, E. Jimenez-Pique, F. Soldera, F. Mucklich and M. Anglada : Acta Mater., 56 (2008) 4206. https://doi.org/10.1016/j.actamat.2008.04.050