• Title/Summary/Keyword: Press Blanking

Search Result 58, Processing Time 0.033 seconds

Characterization of Acousto-ultrasonic Signals for Stamping Tool Wear (프레스 금형 마모에 대한 음-초음파 신호 특성 분석)

  • Kim, Yong-Yun
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.19 no.4
    • /
    • pp.386-392
    • /
    • 2009
  • This paper reports on the research which investigates acoustic signals acquired in progressive compressing, hole blanking, shearing and burr compacting process. The work piece is the head pin of the electric connector, whose raw material is the preformed steel bar. An acoustic sensor was set on the bed of hydraulic press. Because the acquired signals include the dynamic characteristics generated for all the processes, it is required to investigate signal characteristics corresponding to unit process. The corresponding dynamic characteristics to the respective process were first studied by analyzing the signals respectively acquired from compressing, blanking and compacting process. The combined signals were then periodically analyzed from the grinding to the grinding in the sound frequency domain and in the ultrasonic wave. The frequency of around 9 kHz in the sound frequency domain was much correlated to the tool wear. The characteristic frequency in the acoustic emission domain between 100 kHz and 500 kHz was not only clearly observed right after tool grinding but its amplitude was also related to the wear. The frequency amplitudes of 160 kHz and 320 kHz were big enough to be classified by the noise. The noise amplitudes are getting bigger, and their energy was much bigger as coming to the next regrinding. The signal analysis was based on the real time data and its frequency spectrum by Fourier Transform. As a result, the acousto-ultrasonic signals were much related to the tool wear progression.

An Automated Process Planning System for Blanking or Piercing of Irregular Shaped Sheet Metal Product with Bending Processes (굽힘공정을 갖는 불규칙형상 박판제품의 블랭킹 및 피어싱용 공정설계 시스템)

  • Choi, J.C.;Kim, B.M.;Kim, C.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.15 no.3
    • /
    • pp.18-23
    • /
    • 1998
  • This paper describes a research work of developing a computer-aided design of blanking and piercing for irregular-shaped sheet metal products. An approach to the CAD system is based on the knowledge-based rules. Knowledge for the CAD system is formulated from plasticity theories, experimental results and the empirical knowledge of field experts. The system has been written in AutoLISP on the AutoCAD with a personal computer and is composed of four main modules, which are input and shape treatment, flat pattern layout, production feasibility check, and strip layout module. Based on knowledge-based rules, the system is designed by considering several factors, such as radius and angle of bend. material and thickness of product, complexities of blank geometry and punch profile, and availability of press. This system is capable of unfolding a formed sheet metal part to give flat pattern and automatically account for the adjustment of bend allowances to match tooling requirements by checking the dimensions and relationships of parts of the folded product. Also this system can carry out a process planning which is obtained from results of irregular shape of product that was successful in production feasibility check module according to flat pattern layout and generate strip layout drawing in graphic forms. The developed system provides its efficiency for flat pattern layout, and strip layout for the irregularly shaped sheet metal products.

  • PDF

A Study on the Complex Automation Die Manufacturing Technology for an Automotive Seat Cushion Panel (자동차 시트 쿠션 판넬의 복합 자동화 금형 제조기술에 관한 연구)

  • Park, D.H.;Jung, C.S.
    • Transactions of Materials Processing
    • /
    • v.23 no.2
    • /
    • pp.75-81
    • /
    • 2014
  • Progressive dies are used for metal stamping during which multiple operations are performed in a sequence. Material is fed automatically from a coil into the press and advances from one die station to the next with each press stroke. Transfer dies are used in high-volume manufacturing for round, deep-drawn, and medium-to-large parts. Several different operations may be incorporated within a transfer die such as blanking, bending, piercing, trimming, and deep drawing. The main challenge in the current study is how to deform a seat cushion panel meeting the design specifications without any defects. A complex automation die manufacturing technology for the automotive seat cushion panel, mixing both semi-progressive die and transfer die for continuous production, was developed.

Development of the Multi Stage Type Die for Thin Sheet Metal Working

  • Sim, Sung-Bo;Park, Sun-Kyu;Lee, Sng-Hoon
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2001.10a
    • /
    • pp.190-195
    • /
    • 2001
  • The piercing and blanking of thin sheet metal working is specified division in press die design and making. In order to prevent the defects, the optimum design of the production part, strip process layout, die design, die making and try out etc. are necessary the analysis of effective factors. For example, theory and practice of metal shearing process and it's phenomena, die structure, machine tool working for die making, die materials and it's heat treatment, metal working in field, their know how etc. are included in those factors. In this study, we analyzed whole of data base, theoretical back ground of metal working process, and then performed the progressive die tryout with the screw press.

  • PDF

Development of the Practical and Adaptive Die of Piloting Stripper Type for Sheet Metal (part 1)

  • Sim, Sung-Bo;Sung, Yul-Min;Song, Young-Seok;Park, Hae-Kyoung
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2000.10a
    • /
    • pp.109-113
    • /
    • 2000
  • The piercing and blanking of thin sheet metal working with a pilot punch guide is specified division in press die design and making. In order to prevent the detects, the optimum design of the production part, strip process layout, die design, die making and try out etc. are necessary the analysis of effective factors. For example, theory and practice of metal shearing process and its phenomena, die structure, machine tool working for die making, die materials and its heat treatment, metal working in industrial and its know how etc. In this study, we analyzed whole of data base, theoretical back ground of metal working process, and then performed the progressive die tryout with the screw press. This study regards to the aim of small quantity of production part's press working by piloting for accurate guide of actual sheet metal strip. Part 1 of this study reveals with production part and strip process layout for the die design.

  • PDF

Plate Forging Process Design for an Under-drive Brake Piston in Automatic Transmission (자동변속기용 언더드라이브 브레이크 피스톤의 판 단조공정 개선 방안)

  • Jeon, H.W.;Yoon, J.H.;Lee, J.H.;Kim, B.M.
    • Transactions of Materials Processing
    • /
    • v.23 no.2
    • /
    • pp.88-94
    • /
    • 2014
  • The under-drive brake piston is an essential part in the automatic transmissions of automobiles. This component is manufactured by forging after blanking from S55C plate with a thickness of 6mm. It is difficult to design the plate forging process using a thick plate approach since there will be limited material flow as well as large press loads. Furthermore, the under-drive brake piston has a complex shape with a right angle step, which often results in die unfill and abrupt increase in press load. To overcome these obstacles, a separate die for filling material sufficiently to the corner of the right angle step is proposed. However, this approach induces an uncontrolled workpiece surface between the dies, resulting in flash. This excess flash degrades the tool life in the final machining after cold forging as well as increases the cycle time to obtain the net-shape of the part. In the current study, we propose an optimum process design using a conventional die shaped with the benefit of finite element analysis. This approach enhanced the process efficiency without sacrificing the dimensional accuracy in the forged part. As the result, the optimum plate forging process was done with a two stage die, which reduces weight of by 6% compared with previous process for the under-drive brake piston.

A study on electrical and mechanical properties and press formability of a Cu/Ag composite sheet (Cu/Ag 복합판재의 전기/기계적 성질 및 프레스 성형성에 관한 연구)

  • Shin, Je-Sik
    • Design & Manufacturing
    • /
    • v.6 no.1
    • /
    • pp.95-100
    • /
    • 2012
  • In this study, a novel Cu composite sheet with embedded high electric conduction path was developed as another alternative for the interconnect materials possessing high electrical conductivity as well as high strength. The Cu composite sheet was fabricated by forming Ag conduction paths not within the interior but on the surface of a high strength Cu substrate by damascene electroplating process. As a result, the electrical conductivity increased by 40% thanks to mesh type Ag conduction paths, while the ultimate tensile strength decreased by 20%. The interfacial fracture resistance of Cu composite sheet prepared by damascene electroplating increased by above 50 times compared to Cu composite sheet by conventional electroplating. For feasibility test for practical application, a leadframe for LED module was manufactured by a progressive blanking and piercing processes, and the blanked surface profile was evaluated as a function of the volume fraction of Ag conduction paths. As Ag conduction path became finer, pressing formability improved.

  • PDF

MICRO HOLE FABRICATION BY MECHANICAL PUNCHING PROCESS

  • Joo B. Y.;Rhim S. H.;Oh S. I.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2003.10b
    • /
    • pp.179-188
    • /
    • 2003
  • The objective of our study is to investigate the micro fabric ability by conventional metal forming processes. In the present investigation, micro hole punching was studied. We tried to control punching process at the micro level and scaled down the standard blanking condition for $25{\mu}m$ hole fabrication. To accommodate this, tungsten carbide tooling sets and micro punching press were carefully designed and assembled meeting accuracy requirements for $25{\mu}m$ hole punching. With our developments, 100, 50, and $25{\mu}m$ holes were successfully made on metal foils such as brass and stainless steel of 100, 50, and $25{\mu}m$ in thickness, respectively, and hole sizes and shapes were measured and analyzed to investigate fabrication accuracy. Shear behavior during micro punching was also discussed. Our study showed that the conventional punching process could produce high quality holes down to $25{\mu}m$.

  • PDF

A New Manufacturing Process for the Ring Plate of Automotive Fuel Tank (자동차 연료탱크용 링 플레이트의 신 제조공법)

  • Chae, M.S.;Lim, Y.H.;Suh, Y.S.;Park, C.D.;Kim, Y.S.
    • Transactions of Materials Processing
    • /
    • v.17 no.5
    • /
    • pp.350-355
    • /
    • 2008
  • Currently, in the automotive industry, the efforts to reduce the manufacturing cost by changing the manufacturing process are continually performed. In this paper, we proposed a new manufacturing process, the roll bending process of a ring plate of automotive fuel tank instead of conventional press blanking process to reduce material loss and manufacturing cost. Finite element analysis was used to optimize the roll bending process to assure rectangular cross-section of the ring plate. Also, spring-back analysis after the roll bending process was performed and dimension of the bending die considering spring-back was analyzed. Finally, we verified a possibility for realization of the proposed method with prototypes.

Study on the blanking characteristics for smooth edged blanks by conventional hydraulic press (범용 유압 프레스에서의 파인 블랭킹 가공 특성에 관한 연구)

  • 최지수;김종호;류제구;정완진
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1994.10a
    • /
    • pp.757-762
    • /
    • 1994
  • 본 연구에서는 정밀진단가공을 위한 파인 블랭킹 기술 개발을 위한 파인 블랭킹용 전용 프레스를 사용 하지 않고 범용 유압 프레스에서 조보 유압 장치에 의해 압력을 조절해가면서 가공특성에 관한 실험적 연구와 이론 해석을 수행한다. 실험을 위해 파인 블랭킹 금형과 유압 장치를 설계 제작하고, 정밀진단 특성에 제일 큰 영향을 미치고 있는 V-돌기( Vee-ring)의 유무와 위치 그리고 스트리핑력 및 카운터 펀 칭력 변화에 따른 제품 정밀도를 조사해 가면서 최적의 정밀도 예측 수단으로 적절함을 확인할 수 있었으며, 실험결과는 작업 조건에 관계없이 모든 제품이 깨끗한 전단면을 나타내고 있으며, 일반적으로 스트리핑력이 감소할수록, 그리고 카운터 펀칭력이 증가할수록 캠버량이 감소하고 특히 카운터 펀칭력에 큰 영향을 받고 있음을 알 수 있었다. 이와같은 현상은 유한 요소해석에 의한 캠버량의 예측에섣고 정성적으로 잘 일치하고 있는 것으로 나타났다.

  • PDF