This study identifies elements involved in designing rehearsals for improving preservice teachers' capacity to teach mathematics. Observation of a secondary mathematics methods course and regular interviews with the teacher educator following each class were used in this research. After characterizing what is considered and enacted in rehearsals as a way to help preservice teachers practice the work of teaching mathematics, I illustrate them with examples from the observations and interviews. I then discuss the challenge of dual contexts-the teacher education classroom and the secondary mathematics classroom-and dual perspectives-the mathematical and pedagogical-in designing and enacting rehearsals. I conclude with implications for mathematics teacher education.
The purpose of this study is to examine the preservice secondary mathematics teachers understanding and dimensions of knowledge about definition of irrational numbers and irrational numbers and operations. I adopted a framework consisting of formal dimensions, intuitive numbers, algorithmic dimentions suggested by Tirosh et al.(1998) by adding instrumental dimension for his study. I surveyed 65 preservice secondary mathematics teachers who are in bachelor program and post-bachelor program for teacher certificate by using a questionnaire suggested by Sirotic and Zazkis(2007). The results of this study suggest that 83.1% of the participants gave correct answers in definitions of irrational numbers. 43% of the preservice secondary teachers gave correct answers in adding with irrational numbers. Also 91% of the preservice teachers gave correct answers in multiplying irrational numbers. The preservice teachers appeared to understand irrational numbers and operations at formal dimension. More than half of the preservice teachers gave incorrect answers in adding irrational numbers and a few participants gave incorrect in multiplying irrational numbers. The preservice teachers seemed to understand irrational numbers and operations at intuitive or instrumental dimension. The results also suggest that the preservice secondary mathematics teachers have incorrect understanding about irrational numbers.
This is a multiple-case study of how preservice secondary mathematics teachers teach a particular mathematics using a technological tool. In a performance interview, the preservice teachers demonstrated how they would teach a specific mathematical topic using Geometer's Sketchpad. The results of this study showed that the preservice teachers designed diverse types of lesson plans and implemented different pedagogical and technological techniques in their teaching demonstrations. The findings suggest that preservice teachers' pedagogical content knowledge is an important factor in the integration of technology into their mathematics teaching. Thus, mathematics teacher educators should help preservice teachers gain a robust pedagogical content knowledge in order to effectively teach mathematics with technological tools.
Teachers and students' knowledge of zero was investigated through data collected from 16 preservice secondary mathematics teachers and 20 gifted secondary school students. Results showed that these teachers and students had an inadequate knowledge about zero. They exhibited a reluctance to accept zero as an attribute for classification, confusion as to whether or not zero is a number, and stable patterns of computational error. Although leachers and researchers have long recognized the value of analyzing student errors for diagnosis and remediation, students have not been encouraged to take advantage of errors as learning opportunities in mathematics instruction. The article suggests using errors as springboards for inquiry in action, discusses its potential contributions to mathematics instruction by analyzing students and preservice teachers errors related to zero.
With the proven benefits of and increased interest in using technology in education, the role of teachers has become more important in integrating technology into mathematics classroom. Thus, it is important to improve preservice teachers' technological, pedagogical, and content knowledge (TPACK), which are influenced by their beliefs. This study examines how preservice secondary mathematics teachers' experience and beliefs related to technology use in the mathematics classrooms impact their TPACK. The results of this study show that preservice teachers who have more experience using technology and who hold student-centered beliefs towards technology use display higher levels of technology-related knowledge than preservice teachers who have little experience and who hold teacher-centered beliefs. Understanding the relationships between preservice teachers' TPACK and beliefs provides insights into how teacher education programs can support preservice teachers to develop TPACK and integrate technology into their future mathematics instruction.
This study explored preservice secondary mathematics teachers' mathematical knowledge for teaching [MKT]. In order to measure preservice teachers' MKT, we developed items according to Ball, Thames & Phelps (2008)'s domains and conducted to 53 preservice teachers. Also, we interviewed 1 preservice teacher with the items and a set of interview questions. The findings from the data analysis suggested as follows: a) overall, the preservice teachers scored average 30.2 out of 100; b) the preservice teachers appeared to be unable to explain students' difficulties in learning a specific mathematical idea and how they would respond to and resolve such difficulties.
This study investigates 55 preservice secondary mathematics teachers' situational understanding of functional relationship. Functional thinking is fundamental and useful because it develops students' quantitative thinking about the world and analytical thinking about complex situations through examination of the relations between interdependent factors. Functional thinking is indispensable for understanding natural phenomena, for investigation by science, and for the technological inventions in engineering and navigation. Therefore, it goes without saying that teachers should be able to represent and communicate about various functional situations in the course of teaching and learning functional relationships to develop students' functional thinking. The result of this study illustrates that many preservice teachers were not able to appropriately represent and communicate about various functional situations. Additionally, it shows that most preservice teachers have limited understanding of the value of teaching function.
The purpose of this study is to investigate preservice secondary teachers' understanding and modification capacity of tasks from mathematics textbooks. This study conducted a survey about how preservice teachers understand the features of mathematical tasks and how they would select and modify tasks appropriately from the curriculum and for lesson goals. The findings from the analysis suggest that the preservice teachers seem to recognize Procedures Without Connections tasks as the high-level tasks. Further, 43 percent of the total numbers appropriately selected the tasks from the curriculum and for lesson goals. Most of the preservice teachers appear to find it difficult to modify low-level tasks into high-level tasks.
In this study, a teaching units for teaching and learning of secondary preservice teachers' mathematising is designed, focusing on reinvention of Bretschneider's formula. preservice teachers can obtain the following through this teaching units. First, preservice teachers can experience mathematising which invent a noumenon which organize a phenomenon, They can make an experience to invent Bretscheider's formula as if they invent mathematics really. Second, preservice teachers can understand one of the mechanisms of mathematics knowledge invention. As they reinvent Brahmagupta's formula and Bretschneider's formula, they understand a mechanism that new knowledge is invented Iron already known knowledge by analogy. Third, preservice teachers can understand connection between school mathematics and academic mathematics. They can understand how the school mathematics can connect academic mathematics, through the relation between the school mathematics like formulas for calculating areas of rectangle, square, rhombus, parallelogram, trapezoid and Heron's formula, and academic mathematics like Brahmagupta's formula and Bretschneider's formula.
The purpose of this study is to investigate preservice secondary mathematics teachers' knowledge about graphical representation and provide implications for better mathematics teaching and learning in our schools. For this purpose, sixty-three preservice teachers were selected and given diverse graphical representation problems of y=1, y=x, x=0, $x^2+y^2=1$. All preservice teachers completed two types of questionnaires. First type is about constructing the graphs of the above each equation, and the second one is to make them find the appropriate graphs from given examples of the each equation. The results indicated that all the participant pre service teachers were unable to construct graphs in terms of various dimensions and various direction of coordinate axis. All of the participants represented the graph of each equation on only two-dimensional coordinate system. In addition, some preservice teachers believed that the axis of coordinates have to be x-axis on horizontal line and y-axis on vertical line. From this study, it is implicated that pre service teacher education program needs to provide the experience of representing the graphs of equation in terms of various dimensions and various direction of coordinate axis so as to develop their future students the flexibility and creativity in mathematical thinking especially in the area of space perception.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.