• Title/Summary/Keyword: Preload Test

Search Result 52, Processing Time 0.023 seconds

A Study on Determining the Design Parameter ($N_c$, $T_i$) of the Surface Reinforcement Method for Soft Ground (연약지반 표층처리공법 설계정수(지지력계수$N_c$, 인장력$T_i$) 산정방법에 관한 고찰)

  • Ham, Tae-Gew;Seo, Se-Gwan;Cho, Sam-Deok;Yang, Kee-Sok;You, Seung-Kyong
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.03a
    • /
    • pp.750-758
    • /
    • 2009
  • This study, as basic research which was intended to develope the surface reinforcement method using reinforcement material which is applicable to very soft ground in Korea, was aimed at proposing the design parameter for the surface ground improvement method. To that end, a wide width tensile test using geotextile, geogrid and steel bar (substitute for bamboo) and 25 kinds of the laboratory model tests with the end restraint conditions of the reinforcement that comprises the constrained and partially constrained (3 types) conditions were conducted. And the result indicated that the modulus of subgrade reaction or $N_c$ value (5.3) apparently overestimated the bearing capacity of very soft ground such as dredged ground. Moreover, as a result of model test by partially constraining the preload of 23.0kgf using geotextile, the effect of bearing capacity($q_1$) appeared to be the largest till the loading stress was $0.4tf/m^2$ due to cohesion, while it reached 75% of the maximum bearing force after $0.4tf/m^2$ due to increase in the effect of bearing capacity($q_2$) caused by the tensile force of the reinforcement. Such results tended to have appeared constantly or very similarly with each other, irrespective of the type of reinforcement (geogrid, steel bar) and constraint conditions.

  • PDF

FATIGUE LIFE ESTIMATION OF IMPLANT USING A FINITE ELEMENT METHOD (유한요소법을 이용한 치아 임플랜트 피로수명 예측)

  • Han In-Sook;Son Jung-Hun;Yang Young-Soo;Lee Seung-Young
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.44 no.4
    • /
    • pp.414-420
    • /
    • 2006
  • Purpose : The purpose of this study is to use finite element analysis to predict the fatigue life of an implant system subjected to fatigue load by mastication (chewing force). The reliability and the stability of implant system can be defined in terms of the fatigue strength. Not only an implant is expensive but also it is almost impossible to correct after it is inserted. From a bio-engineering standpoint, the fatigue strength of the dental implant system must be evaluated by simulation (FEA). Material and Methods Finite element analysis and fatigue test are performed to estimate the fatigue strength of the implant system. Mesh of implant is generated with the actual shape and size. In this paper, the fatigue strength of implant system is estimated. U-fit (T. Strong, Korea, internal type). The stress field in implant is calculated by elastic-plastic finite element analysis. The equivalent fatigue stress, considering the contact and preload stretching of a screw by torque for tightening an abutment, is obtained by means of Sine's method. To evaluate the reliability of the calculated fatigue strength, fatigue test is performed. Results: A comparison of the calculated fatigue strength with experimental data showed the validity and accuracy of the proposed method. The initiation points of the fatigue failure in the implant system exist in the region of high equivalent fatigue stress values. Conclusion: The above proposed method for fatigue life estimation tan be applied to other configurations of the differently designed and improved implant. In order to prove reliability of prototype implant, fatigue test should be executed. The proposed method is economical for the prediction of fatigue life because fatigue testing, which is time consuming and precision-dependent, is not required.

Innovative Methodology for Assembling Jack up Leg of 205m on ground of Ultra

  • Yang, Yeong-Tae;Sim, Song-Seop;Lee, Seung-Yeop;Hwang, Oe-Ju;Sin, Bong-Yeong
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2003.10a
    • /
    • pp.87-92
    • /
    • 2003
  • Generally, in jack up rig design for harsh environment, its leg height is a major factor for achieving a sufficient serviceability & operability in terms of the worst environment and the workable depth. Due to difficulties in constructing such a high-slender leg, inaccessibility of yard fabrication equipment, etc. the construction of Jack up rig fur harsh deep sea has not been common. Method using heavy crawler crane, fabrication tower or extension by the floating crane vessel is still conventional construction but, considering high cost fur mobilizing heavy lift vessel (HLV) or additional marine work for implementing preload / full height test at sea, the ground-base construction is much advantageous. Air skidding method (ASM hereafter) is ground-based construction methodology, newly developed due to such requests. ASM could also be extended to similar engineering fields. This paper presents the operating sequence, design parameters and procedure which were verified through successful operation at the end of May 2002.

  • PDF

Vibration Control of Condensate Motors in Nuclear Powerplant By Bearing Redesign (베어링 재설계에 의한 원전 COP motor의 진동 제어)

  • Lim, Do-Hyeong;Kim, Won-Hyun;Lee, Jong-Moon;Lee, Soo-Mok
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2008.11a
    • /
    • pp.264-269
    • /
    • 2008
  • This paper presents the summary of control of abnormal vibration found in the COP motors of a nuclear power plant. All six identical units of COP pump-motor assemblies showed unstable vibration pattern of which one or two showed higher vibration enough to exceed the allowable level from the installation stage. Many trials of test, measurement, overhaul and replacement had been repeated to investigate and solve the problem but only to reach unsatisfactory settlement. Recently several times of site tests are made and followed by significant diagnostic actions in which the authors group participated. It was found that the coupled shafting system of motor and pump is in close resonance with the $1^{st}$ shaft rotating speed. Redesign of topside motor bearing clearance is made to increase bearing stiffness and hence to avoid the resonance which consequently led to reduce the troubled vibration to allowable and stable status.

  • PDF

Modeling and Uncertainty Analysis of Ballscrew Nut Stiffness (볼스크류 너트부의 강성 모델링과 불확도 해석)

  • Min, Bog-Ki;Cao, Lei;Khim, Gyungho;Park, Chun-Hong;Chung, Sung-Chong
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.32 no.5
    • /
    • pp.415-422
    • /
    • 2015
  • Ballscrews are important motion transfer and positioning units of industrial machinery and precision machines. Positioning accuracy of the feed drive system depends upon axial stiffness of ballscrew systems. As the nut stiffness depends upon preload and operating conditions, analytical modeling of the stiffness is performed through the contact and body deformation analysis. For accurate contact analysis, the contact angle variation between balls and grooves is incorporated in the developed model. To verify the developed mathematical stiffness model, experiments are conducted on the test-rig. Through the uncertainty analysis according to GUM (Guide to the expression of Uncertainty in Measurement), it is confirmed that the formulated stiffness model has over 85% estimation accuracy. After constructing the ballscrew DB, a quick turnaround system for the nut stiffness estimation has been developed in this research.

Evaluation for Mechanical Properties of High Strength Concrete at High Temperature by Stressed Test and Unstressed Test (설계하중 사전재하 및 비재하방식에 의한 고강도콘크리트의 고온특성 평가)

  • Kim, Gyu-Yong;Kim, Young-Sun;Lee, Tae-Gyu;Park, Chan-Kyu;Lee, Seung-Hoon
    • Journal of the Korea Concrete Institute
    • /
    • v.20 no.5
    • /
    • pp.583-592
    • /
    • 2008
  • Recently, the effects of high temperature on compressive strength, elastic modulus and strain at peak stress of high strength concrete were experimentally investigated. The present study is aimed to study the effect of elevated temperatures ranging from 20 to 700 on the material mechanical properties of high strength concrete of 40, 60, 80 MPa grade. In this study, the types of test were the stressed test and stressed residual test that the specimens are subjected to a 25% of ultimate compressive strength at room temperature and sustained during heating and when target temperature is reached, the specimens are loaded to failure. And another specimens are loaded to failure after 24 hour cooling time. Tests were conducted at various temperatures ($20{\sim}700^{\circ}C$) for concretes made with W/B ratios 46%, 32% and 25%. Test results showed that the relative values of compressive strength and elastic modulus decreased with increasing compressive strength grade of specimen and the axial strain at peak stress were influenced by the load before heating. Thermal strain of concrete at high temperature was affected by the preload level as well as the compressive strength. Finally, model equation for compressive strength and elastic modulus of heated high strength concrete proposed by result of this study.

Effects of Spicy Soup with Red Pepper on Body Temperature, Blood Pressure, Appetite and Energy Intake (고추를 첨가한 매운국이 체온, 혈압, 식욕 및 섭취열량에 미치는 영향)

  • 김석영;김주영;박경민;장희애
    • Journal of Nutrition and Health
    • /
    • v.36 no.8
    • /
    • pp.870-881
    • /
    • 2003
  • We examined the effects of 5 g red pepper powder in soup preload given at breakfast on food intake, blood pressure, body core temperature, hunger, fullness and thirst scores in 29 female collage students. All subjects received two kind of soup preloads in random order. After ingesting a soup, subjects ate other food items as a breakfast ad libitum. Two soups were of the same composition and volume but differed only in 5 g red pepper. So one soup designated as "beef-vegetable" and the other soup designated as "red pepper". Red pepper soup consumption significantly enhanced energy and macronutrient intake by 17%. The hunger scores after test meals were inversely correlated with energy and nutrient intake in beef-vegetable meal. However, the postprandial hunger scores were not correlated with energy and nutrient intakes in red pepper meal. The fullness scores at 90 min after the red pepper meal were inversely correlated with energy and nutrient intake whereas the fullness scores after beef-vegetable meal were not correlated with energy and nutrient intake. These results suggest that hot red pepper ingestion may desensitize some gastrointestinal vagal afferents and disturb feeling of hunger and fullness. The postprandial changes of body temperatures in red pepper meal were higher for a longer time in comparison with those in beef-vegetable meal. For the red pepper meal there frequently were higher correlations between blood pressures and anthropometric measurements, compared to those in beef-vegetable meal. These results might be explained partly by the enhancing effects of capsaicin on thermogenesis and sympathetic nervous system activity. It is concluded that the ingestion of spicy soup with red pepper can increase appetite, energy and nutrient intakes in Korean females, and this effect might be related to disturbed feeling of hunger and fullness.hunger and fullness.

A novel preloading method for foundation underpinning for the remodeling of an existing building

  • Wang, Chengcan;Han, Jin-Tae;Kim, Seokjung;Jang, Young-Eun
    • Geomechanics and Engineering
    • /
    • v.24 no.1
    • /
    • pp.29-42
    • /
    • 2021
  • The utilization of buildings can be improved by extending them vertically. However, the added load of the extension might require building foundations to be underpinned; otherwise, the loads on the foundations might exceed their bearing capacity. In this study, a preloading method was presented aiming at transferring partial loads from existing piles to underpinning piles. A pneumatic-type model preloading device was developed and used to carry out centrifuge experiments to evaluate the load-displacement behavior of piles, the pile-soil interaction during preloading, and the additional loading caused by vertical extension. The results showed that the preloading devices effectively transfer load from existing piles to underpinning piles. In the additional loading test of group piles, the load-sharing ratio of a pile increased with its stiffness. The load-sharing ratio of a preloaded micropile was less than that of a non-preloaded micropile as a result of the reduction in axial stiffness caused by preloading before additional loading. Therefore, a slight reduction of the load-sharing capacity of an underpinning pile should be considered if the preloading method is applied. Further, two full scale preloading devices was developed. The devices preload underpinning piles and thereby produce reaction forces on a reaction frame to jack existing piles upward, thus transferring load from the existing piles to the underpinning piles. Specifically, screw-type and hydraulic-jack type devices were developed for the practical application of foundation underpinning during vertical extension, and their operability and load transfer effect verified via full-scale structural experiments.

A comparative biomechanical study of original and compatible titanium bases: evaluation of screw loosening and 3D-crown displacement following cyclic loading analysis

  • Oziunas, Rimantas;Sakalauskiene, Jurgina;Jegelevicius, Darius;Januzis, Gintaras
    • The Journal of Advanced Prosthodontics
    • /
    • v.14 no.2
    • /
    • pp.70-77
    • /
    • 2022
  • PURPOSE. This study evaluated screw loosening and 3D crown displacement after cyclic loading of implant-supported incisor crowns cemented with original titanium bases or with three compatible, nonoriginal components. MATERIALS AND METHODS. A total of 32 dental implants were divided into four groups (n = 8 each): Group 1 used original titanium bases, while Groups 2-4 used compatible components. The reverse torque value (RTV) was evaluated prior to and after cyclic loading (1,200,000 cycles). Samples (prior to and after cyclic loading) were scanned with a microcomputed tomography (micro-CT). Preload and postload files were superimposed by 3D inspection software, and 3D crown displacement analysis was performed using root-mean-square (RMS) values. All datasets were analyzed using one-way ANOVA and Tukey's post hoc analysis. RESULTS. Significant variations were observed in the postload RTV, depending on the titanium base brand (P < .001). The mean postload RTVs were significantly higher in Groups 1 and 2 than in the other study groups. While evaluating 3D crown displacement, the lowest mean RMS value was shown in the original Group 1, with the highest RMS value occurring in Group 4. CONCLUSION. Within the limitations of this in vitro study and under the implemented conditions, it was concluded that the manufacturer brand of the titanium base significantly influenced screw loosening following the fatigue test and influenced 3D crown displacement after cyclic loading.

Time-dependent Analysis of Reinforced and Prestressed Concrete Structures Incorporating Creep Recovery Function (크리프 회복 거동을 고려한 철근콘크리트 및 프리스트레스트 콘크리트 부재의 장기거동해석에 관한 연구)

  • Kim, Se-Hoon;Oh, Byung-Hwan
    • Magazine of the Korea Concrete Institute
    • /
    • v.11 no.1
    • /
    • pp.279-288
    • /
    • 1999
  • The creep of concrete structures caused by variable stresses is generally calculated by step-by-step method based on the superposition of creep function. Although most practical application is carried out by this linear assumption. significant deviations between predictions and experiments have been observed when unloading takes place, that is. stress is reduced. This shows that the superposition of creep function does not describe accurately the effect of sustained compressive preload. The main purpose of this study is to propose a creep analysis model which is expressed with both creep function and creep recovery function where increase or decrease of stress is repeated. In these two function method, the creep behavior is modelled by using linear creep law for loading and creep recovery law for unloading. To apply two function method to time analysis of concrete structures, the calculation method of creep strain increment under varying stress is proposed. The calculation results based on the present method correlates very well with test data, but the conventional superposition method exhibits large deviation from test results. This paper provides a more accurate method for the time dependent analysis of concrete structures subjected to varying stress, i.e. increasing or decreasing stress. The present method may be efficiently employed in the revision of future concrete codes.