• Title/Summary/Keyword: Preform shape

Search Result 116, Processing Time 0.028 seconds

An Automated Process Planning and Die design System for Bolt Products (볼트류 제품에 관한 공정설계 및 금형설계 자동화 시스템)

  • Song, S.W.;Choi, Y.;Jung, S.Y.;Kim, C.;Choi, J.C.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2001.04a
    • /
    • pp.774-777
    • /
    • 2001
  • This paper describes a research work of developing a computer-aided design system of cold forging products. An approach to the system is based on the knowledge-based rules. Knowledge for the system is formulated from plastic theories, experimental results and the empirical knowledge of field experts. The system has been written in AutoCAD with a personal computer and is composed of six modules, which are selection of billet material, input of final product, process planning design, preform modification, insert design, shrink rings design module. Based on knowledge-based rules, the system is designed by considering several factors such as volume constancy, limite of formability by material, preform shape and so on.

  • PDF

Manufacturing and characterization of tufted preform with complex shape

  • Gnaba, Imen;Wang, Peng;Legrand, Xavier;Soulat, Damien
    • Advances in aircraft and spacecraft science
    • /
    • v.6 no.2
    • /
    • pp.105-116
    • /
    • 2019
  • An alternative to the multilayered preforming is to use structures reinforced through-the-thickness in order to manufacture thicker and more complex pieces. Stitching technology is developed to bind dry reinforcements together or to strengthen composites in thickness performance by inserting structural yarns. Tufting process represents the simplest one-sided sewing technology and it is specifically designed for dry preform/liquid composite molding process route. Currently, the tufting technology is getting more and more interest due to its simplest and efficient process where it involves the insertion of binder threads via a single needle through the fabric. This technique of reinforcement through-the-thickness requires only one access to the preform which makes it suitable for three-dimensional structures and complex shaped textile composites. This paper aims to improve the understanding of the mechanical performance of tufted structures. An experimental study was developed, which included tensile and bending behaviours of tufted and un-tufted preforms, in order to evaluate the effect of tufting on the mechanical performance of dry preforms. The influence of the process parameters (tufting density, loop length, tufting yarns${\ldots}$) on the mechanical performance ofthe final structure is also highlighted.

Process Design in Cold Forging of the Backward and Forward Extruded Part (전.후방 압출품의 냉간단조 공정설계)

  • Min, G.S.;Choi, J.;Choi, J.C.;Kim, B.M.;Cho, H.Y.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.14 no.8
    • /
    • pp.57-64
    • /
    • 1997
  • The process design of backward and forward extrusion of axisymmetric part has been studied in this paper. The important factors of cold forging process with complex geometry are the design of initial billet shape, the possibility of forming by one-stage operation and the determination of preform shapes, etc. Based on the systematic procedure of process sequence design, the forming operation of cold forged part is analyzed by the commercial finite element program, DEFORM. The design criteria are forming load, geo- metrical filling without defect and a sound distribution of effective strain in final product. It is noted that one step of preform operation is required to obtain the final product. Numerical result is compared with experi- mental one. It is found that the analyzed result is in good agreement with actual forming result.

  • PDF

Determination of Initial Billet Shape to improve Dimension Accuracy in Backdward Extruded Cups (후방압출공정에서 치수정밀도 향상을 위한 초기소재형상 결정)

  • 김호창
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1996.04a
    • /
    • pp.196-200
    • /
    • 1996
  • In general, cylinderical types of billet are use in the backward extrusion. It is difficult to obtain homogenious wall thickness by the backward extrusion using these. It is gradually increased that improving the accuracyand reducing the post machining of the final products. In manufacturing cup shaped parts by backward extrusion, it is very important to design optimal initial billet or preform. These can improve the accuracy of final products and remove the post machining processes. In this study, the influence of final parts geometry by the shape of initial billet as non machined types are discussed.

  • PDF

Process Sequence Design in Cold Forged Part of Hub (허브 냉간단조품의 공정설계)

  • Go, Dae-Cheol;Kim, Byeong-Min;O, Se-Uk
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.11
    • /
    • pp.3387-3397
    • /
    • 1996
  • The Hub is an auto mobile component used as aircon clutch. The important aspects in cold forging of the Hub with complex geometry are the design of an initial shape of the workpiece, the possibility of the forming by one-stage operation and the determination of number of performs, etc. Based on the systematic procedure of process sequence design, in this paper, the forming operation of cold forged part of the Hub is designed by the rigid-plastic finite element method. The two design criterion of geometrical filling without defect and an even distribution of effective strain in final product are investigated in controlling the initial shape of the workpiece and preform configuration. It is noted that one preforming operation is required in order to obtain final product of the Hub.

A Study on the Process Development of Mono Steel Forged Piston for Diesel Engine (디젤 엔진용 일체형 스틸 단조피스톤 공정 개발에 관한 연구)

  • Yeom, Sung-Ho;Nam, Kyoung-O;Hwang, Doo-Soon;Kwon, Hyuk-Sun;Hong, Sung-In
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.14 no.3
    • /
    • pp.44-50
    • /
    • 2006
  • The mono steel forged piston was improved a mechanical strength of an aluminum piston and reduced the weight of a articulated piston. The mono steel forged piston was composed of forged crown part and forged skirt part and was completed by friction welding process of two forged parts. Forging process analysis and friction welding analysis was done by finite element simulation using numerical package DEFORM. The preform shape and the initial billet dimension were decided by maximum stress of the die, amount of the flash and filling of die. The upset length of friction welding variable was decided by the shape of the flash that was created by friction welding analysis. Through this research, we developed a forging process of the mono steel forged piston, and decided the design variables of friction welding.

A Study on the Behavior of Combustion Wave Propagation and the Structure of Porous TiNi Body during Self-propagating High-temperature Synthesis Process

  • Kim, Ji-Soon;Gjuntera, Victor E.;Kim, Jin-Chun;Kwon, Young-Soon
    • Journal of Powder Materials
    • /
    • v.17 no.1
    • /
    • pp.29-35
    • /
    • 2010
  • We produced cylindrical porous TiNi bodies by Self-propagating High-temperature Synthesis (SHS) process, varying the heating schedule prior to ignition of a loose preform compact made from (Ti+Ni) powder mixture. To investigate the effect of the heating schedule on the behaviour of combustion wave propagation and the structure of porous TiNi shape-memory alloy (SMA) body, change of temperature in the compact during SHS process was measured as a function of time and used for determining combustion temperature and combustion wave velocity. Microstructure of produced porous TiNi SMA body was observed and the results were discussed with the combustion characteristics. From the results it was concluded that the final average pore size could be controlled either by the combustion wave velocity or by the average temperature of the preform compact prior to ignition.

Determination of Initial Billet Shape to Improve Dimensional Accuracy in Backward Extruded Cups (후방압출공정에서 치수정밀도 향상을 위한 초기소재형상 결정)

  • Kim, H.C.;Kim, T.H.;Park, J.C.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.14 no.2
    • /
    • pp.129-135
    • /
    • 1997
  • Experimental studies have been carried out to obtain uniform cups by one operation of backward extrusion. A lot of factors on dimensional accuracy of backward extruded cups are billet material, billet shape, punch shape, punch velocity, geometry of tool, tool material, and lubrication etc. In manufacturing cup-shaped parts by backward extrusion, it is very important to design the initial billet shape or the preform. The objective of this paper is to find that the shape of the initial billet is related to dimensional accuracy and also to manufacture the more accurate product simultaneously reducing the loss of material as forming the shape of the initial billet by means of upsetting.

  • PDF

Preform design of large sized profile ring rolling using main roll (메인롤을 이용한 대형 형상링롤링의 예비성형체 연구)

  • Kim, H.J.;Kang, J.H.;Kang, S.S.
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.38 no.1
    • /
    • pp.65-70
    • /
    • 2014
  • This paper introduces a preform design method for a ring rolling process with an outer step. Underfilling is one of the general defects of the profile ring rolling process. It occurs when the deformation amount is small or step depth of the profiled region is large. To prevent underfilling, increasing the deformation amount or using a preform of size similar to that of the final product are required. Furthermore, the filling limit equation is suggested based on the shape factor and deformation ratio for preventing defects in the products. The filling limit equation has been derived through finite element analyses and production tests for four different cases. For verifying the suggested method, realsized profile rolling tests were performed, and test results were compared with the predictions of the equation.

Improving the Whitening Phenomenon Technology for Preform PET Injection Molding by Using a Ceramic Insulation Gate (세라믹 단열 게이트를 이용한 블로우성형용 PET 프리폼의 백화현상 저감 기술)

  • Kwak, Tae-Soo;Hwang, Deok-Sang;Kang, Byung-Ook;Kim, Tae-Kyu
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.16 no.6
    • /
    • pp.63-68
    • /
    • 2017
  • The purpose of this study is to improve the whitening phenomenon around the PET preform gate for blow molding. CAE analysis of plastic injection molding has been applied to design of preform shape and select the injection molding conditions. A ceramic insulation gate with lower thermal conductivity than metal is applied to improve the whitening phenomenon created around the gate in the injection molding process. According to the results of CAE analysis, the warpage deformation at the square corner was estimated to be about 0.34 mm at the bottom. From the results of the temperature history analysis, it was confirmed that the resin near the gate cooled more rapidly than the cavity. Ceramic insulated gates were fabricated to reduce the cooling rate and experiments were conducted to confirm the effectiveness of the whitening phenomenon improvement. As a result of the ceramic insulation gate experiment, it was confirmed that the whitening phenomenon was significantly reduced around the gate.