• 제목/요약/키워드: Preferential corrosion

검색결과 18건 처리시간 0.027초

Effect of Chemical Passivation Treatment and Flow on the Corrosion of 304 Stainless Steel in Hydrochloric Acid Solution

  • Zhao, Jie;Cheng, Cong Qian;Cao, Tie Shan
    • Corrosion Science and Technology
    • /
    • 제14권6호
    • /
    • pp.273-279
    • /
    • 2015
  • Effects of passive film quality by chemical passivation and solution flow on the corrosion behavior of 304 stainless steel in HCl solution were investigated using a coloration indicator, and by corrosion weight loss, electrochemical polarization and element dissolution measurements. A high redness degree suggests a low passive-film integrity for 304 stainless steel following air exposure, while the minimum redness degree for the samples after chemical passivation suggests a high passive-film integrity. In the static condition, samples subjected to air exposure exhibited a high corrosion rate and preferential dissolution of Fe. Chemical passivation inhibited the corrosion rate due to the intrinsically high structural integrity of the passive film and high concentrations of Cr-rich oxides and hydroxide. Solution flow accelerated corrosion by promoting both the anodic dissolution reaction and the cathodic reaction. Solution flow also altered the preferential dissolution to fast uniform dissolution of metal elements.

산성 용액에서 전기화학적 특성과 침지 시간에 따른 고크롬 백주철의 부식 거동 (Time-Dependent Corrosion Behavior of High Chromium White Cast Iron in an Acidic Solution)

  • 이준섭;바산자프 오취개럴;오준석;이재현
    • Corrosion Science and Technology
    • /
    • 제23권4호
    • /
    • pp.310-314
    • /
    • 2024
  • The corrosion behavior of high chromium white cast iron was studied in 0.5 mol dm-3 H2SO4 + 0.01 mol dm-3 HCl solution over time through electrochemical and immersion experiments. Potentiodynamic and potentiostatic polarizations revealed active-passivation transition behavior, with critical current densities observed at -0.27 VSSE and 0.00 VSSE, repectively. The former potential showed preferential dissolution of primary γ phases, while the latter one showed preferential dissolution of eutectic γ phases. Immersion tests showed an exponential increase in corrosion rate, with significant acceleration observed around 1000 seconds due to the onset of eutectic γ phase dissolution. Over a 24-hour immersion period, both γ phases exhibited extensive corrosion, leaving carbides largely intact. These findings elucidate distinct corrosion behaviors of high chromium white cast iron in acidic environments, providing critical insights into material performance evaluation. Understanding these mechanisms is essential for predicting the longevity and durability of materials in corrosive conditions, thereby informing better material design and application strategies.

SA106 Gr.C강 용접재에서의 유체가속부식(FAC) 현상 연구 (A Study on Flow-Accelerated Corrosion of SA106 Gr.C Weldment)

  • ;김준환;김인섭
    • Journal of Welding and Joining
    • /
    • 제19권3호
    • /
    • pp.334-341
    • /
    • 2001
  • The chemical and geometric effects of weld on flow-accelerated corrosion (FAC) of SA106 Gr.C low alloy steel pipe in 3.5wt% NaCl and simulated feedwater of nuclear power plant have been investigated by using rotating cylinder electrode. Polarization test and weight loss test were conducted and compared at rotating speed of 2000rpm (3.14m/s) with the variables of chemical and geometric parameters. The results showed that the chemical effects were relatively larger than the geometric effects, and the welded parts were the local anode and preferentially corroded, which could be explained by the differences between microstructural and compositional parameters. On the other hand, under active corrosion conditions, the heat affected zone were severely corroded and microstructural effects became the important role in the whole process.

  • PDF

Improving of Corrosion Resistance of Aluminum Alloys by Removing Intermetallic Compound

  • Seri, Osami
    • Corrosion Science and Technology
    • /
    • 제7권3호
    • /
    • pp.158-161
    • /
    • 2008
  • It is well known that iron is one of the most common impurity elements found in aluminum and its alloys. Iron in the aluminum forms an intermetallic compounds such as $FeAl_3$. The $FeAl_3$ particles on the aluminum surface are one of the most detrimental phases to the corrosion process and anodizing procedure for aluminum and its alloys. Trial and error surface treatment will be carried out to find the preferential and effective removal of $FeAl_3$ particles on the surfaces without dissolution of aluminum matrix around the particles. One of the preferable surface treatments for the aim of getting $FeAl_3$ free surface was an electrochemical treatment such as cathodic current density of $-2kAm^{-2}$ in a 20-30 mass% $HNO_3$ solution for the period of 300s. The corrosion characteristics of aluminum surface with $FeAl_3$ free particles are examined in a $0.1kmol/m^3$ NaCl solution. It is found that aluminum with free $FeAl_3$ particles shows higher corrosion resistance than aluminum with $FeAl_3$ particles.

일상 생활용수 내 Zn-Al-Mg계 합금도금강재의 부식거동 (Corrosion Behavior of Zn-Al-Mg Alloy Coated Steel Exposed to Residential Water)

  • 이재원;김성진
    • Corrosion Science and Technology
    • /
    • 제22권5호
    • /
    • pp.387-392
    • /
    • 2023
  • The objective of this study was to evaluate corrosion resistance of Zn-Al-Mg alloy coated steel in residential water with trace quantities of Cl-. Comparative evaluations were performed using two commercial coated steel products, GI and Galvalume, as reference samples. Examination of corrosion morphology and measurement of weight loss revealed that the Zn-Al-Mg alloy coated steel exhibited higher corrosion resistance than reference samples. This finding suggests that the alloy coated steel possesses long-term corrosion resistance not only in highly Cl- concentrated environments such as seawater, but also in environments with extremely low levels of Cl- found in residential water. The primary factor contributing to the superior corrosion resistance of the Zn-Al-Mg alloy coated steel in residential water is the formation of an inhibiting corrosion product composed primarily of two phases: Zn5(OH)6(CO3)2 and Zn5(OH)8Cl2·H2O. The preferential dissolution of Mg from the corroded coating layer can increase alkalinity, which might enhance the thermodynamical stability of Zn5(OH)6(CO3)2.

Effects of Tungsten on the Precipitation Kinetics of Secondary Phases and the Associated Susceptibility to Pitting Corrosion in Duplex Stainless Steels

  • Park, Chan-Jin;Kwon, Hyuk-Sang
    • Corrosion Science and Technology
    • /
    • 제5권6호
    • /
    • pp.189-195
    • /
    • 2006
  • Effects of tungsten (W) on the precipitation kinetics of secondary phases and the associated resistance to pitting corrosion of 25%Cr duplex stainless steels were investigated through microstructural and electrochemical noise analyses. With the partial substitution of W for Mo in duplex stainless steel, the potential and current noises of the alloy were significantly decreased in chloride solution due to retardation of the ${\sigma}$ phase precipitation. The preferential precipitation of the $\chi$ phase in the W-containing alloy during the early period of aging contributed to retarding the precipitation of the $\sigma$ phase by depleting W and Mo along grain boundaries. In addition, the retardation of the nucleation and growth of the $\sigma$ phase in the W-containing alloy appears to be attributed to the inherently low diffusivity of W compared with that of Mo.

선박용 Al-황동세관의 SCC에 미치는 부식환경의 영향 (Effect of corrosion environment on the SCC of Al-brass tube for vessel)

  • 임우조;정해규
    • 수산해양기술연구
    • /
    • 제39권4호
    • /
    • pp.291-297
    • /
    • 2003
  • Al-brass is usually used as the tube material of vessel's heat exchanger for seawater cooling system because it has high thermal conductivity and good mechanical properties and high corrosion resistance due to cuprous oxide (Cu20) layer against seawater. However, Al-brass tubes of heat exchanger for vessel at the actual environment is reported that local corrosion such as stress corrosion cracking occurred by synergism effect between mechanical factor and corrosion environment In this paper, the effect of corrosion environment on the stress corrosion cracking of Al-brass in various NH4OH of 3.5% NaCl solution, under flow by constant displacement tester. Based on the test results, the behavior of polarization, stress corrosion crack propagation and dezincification phenomenon of Al-brass are investigated. The main results are as follows:(1) Increasing range of potential from open circuit potential to repassivation gets lower, as the contain rate of NH4OH gets higher. (2) As contain rate of NH4OH gets higher, SCC of Al-brass is become activation but the protection film(Cu20) of Al-brass is created in 3.5% NaCl solution. (3) According as content of NH4OH increases in 3.5% NaCl solution, the dezincifiction area is spread. It is concluded that dezincification occurred by localized preferential anodic dissolution at stress focusing region.

산성 용액에서 고크롬 주철의 전면 부식 거동 (General Corrosion Behavior of High Chromium Cast Iron in an Acid Solution)

  • 이준섭;이준형;오준석;이재현
    • Corrosion Science and Technology
    • /
    • 제20권6호
    • /
    • pp.367-372
    • /
    • 2021
  • The effect of carbon addition on the general corrosion behavior of high-chromium cast iron (HCCI) was studied by a scanning electron microscope with energy dispersive spectroscopy (SEM-EDS) or electron back-scattered diffraction (EBSD), or electrochemical polarization techniques in 0.1 mol dm-3 H2SO4 + 0.05 mol dm-3 HCl at room temperature. The addition of 2.1-2.8 wt% carbon to HCCI increased the fraction of eutectic austenite and eutectic carbide phases, while that of HCCI decreased the fraction of the primary austenitic phase. Potentiostatic polarization of the HCCI at -0.35 VSSCE or 0.0 VSSCE resulted in preferential general corrosion of the primary austenitic or eutectic austenitic phases, respectively. The decrease in corrosion current density and the shift in noble corrosion potential direction with increasing carbon content in the HCCI indicated that the fraction and the chemical composition of austenitic (primary and eutectic) and carbide phases were strongly related to the general corrosion behavior of the HCCI.

Performance of Submerged Hardware in Continuous Galvanizing

  • Tang, Nai-Yong;Liu, Daniel;Zhang, Keith
    • Corrosion Science and Technology
    • /
    • 제9권3호
    • /
    • pp.116-121
    • /
    • 2010
  • For over a decade, research and development on submerged hardware in continuous galvanizing pots has been carried out at Teck's Product Technology Centre. The outcome of numerous laboratory tests and field trials has demonstrated that dissimilar materials with comparable surface hardness are most suitable for the manufacture of roll bearings. Wear debris can be easily retained in bearings made of the same material, thereby negatively affecting bearing performance and service life. Bearings made of the same materials are also vulnerable to catastrophic failures. The dissolution of iron from the coated strip creates an iron-rich zone associated with a high concentration gradient in the vicinity of the sink roll. Consequently, the sink roll becomes a preferential site for dross pick-up. In operations involving extremely high temperatures, such as in Galvalume production, the material selection for pot hardware is immaterial to the final corrosion product of the hardware and the pick-up on the hardware.

A Study on the Post-Weld Heat Treatment Effect to Mechanical Properties and Hydrogen Embrittlement for Heating Affected Zone of a RE 36 Steel

  • Moon, Kyung-Man;Lee, Myung-Hoon;Kim, Ki-Joon;Kim, Jin-Gyeong;Kim, Seong-Jong
    • Corrosion Science and Technology
    • /
    • 제2권6호
    • /
    • pp.283-288
    • /
    • 2003
  • The cathodic protection method is being widely used in marine structural steel, however a high tensile steel like RE 36 steel for marine structural steel is easy to get hydrogen embrittlement due to over protection during cathodic protection as well as preferential corrosion of HAZ(Heating Affected Zone) part. In this paper, corrosion resistance and mechanical properties such as elongation and hydrogen embrittlement were investigated with not only in terms of electrochemical view but also SSRT(Slow Strain Rate Test) method with applied constant cathodic potential, analysis of SEM fractography in case of both As-welded and PWHT(Post-Weld Heat Treatment) of $550^{\circ}C$. The best effect for corrosion resistance was apparently indicated at PWHT of $550^{\circ}C$ and elongation was increased with PWHT of $550^{\circ}C$ than that of As-welded condition. On the other hand. Elongation was decreased with applied potential shifting to low potential direction which may be caused by hydrogen embrittlement, however the susceptibility of hydrogen embrittlement was decreased with PWHT of $550^{\circ}C$ than that of As-welded condition and Q.C(quasi cleavage) fracture mode was also observed significantly according to increasing of susceptibility of hydrogen embrittlement. Eventually it is suggested that an optimum cathodic protection potential range not causing hydrogen embrittlernent is from -770 mV(SCE) to -850 mV(SCE) in As-welded condition while is from -770 mV(SCE) to -875 mV(SCE) in PWHT of $550^{\circ}C$.