Effects of Tungsten on the Precipitation Kinetics of Secondary Phases and the Associated Susceptibility to Pitting Corrosion in Duplex Stainless Steels

  • Park, Chan-Jin (School of Material Science and Engineering, Chonnam National University) ;
  • Kwon, Hyuk-Sang (Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology(KAIST))
  • Published : 2006.12.01

Abstract

Effects of tungsten (W) on the precipitation kinetics of secondary phases and the associated resistance to pitting corrosion of 25%Cr duplex stainless steels were investigated through microstructural and electrochemical noise analyses. With the partial substitution of W for Mo in duplex stainless steel, the potential and current noises of the alloy were significantly decreased in chloride solution due to retardation of the ${\sigma}$ phase precipitation. The preferential precipitation of the $\chi$ phase in the W-containing alloy during the early period of aging contributed to retarding the precipitation of the $\sigma$ phase by depleting W and Mo along grain boundaries. In addition, the retardation of the nucleation and growth of the $\sigma$ phase in the W-containing alloy appears to be attributed to the inherently low diffusivity of W compared with that of Mo.

Keywords

References

  1. C. J. Park and H. S. Kwon, Corros. Sci., 44, 2817 (2002) https://doi.org/10.1016/S0010-938X(02)00079-3
  2. R. F. Steigerwald, Corrosion, 33,338 (1977) https://doi.org/10.5006/0010-9312-33.9.338
  3. J. Oc Nilsson, Mater. Sci. Tech., 8, 685 (1992) https://doi.org/10.1179/mst.1992.8.8.685
  4. C. S. Barret and T. B. Massalski, Structures and Metals, 3rd ed., Oxford, U. K. Pergamon Press, p. 266, (1980)
  5. R. G. Barrows and J. B. Newkirk, Metall. Trans. 3, 2889 (1972) https://doi.org/10.1007/BF02652857
  6. J. O. Nilsson and A. Wilson, Mater. Sci. Tech. 9, 545 (1993) https://doi.org/10.1179/026708393790172222
  7. M. E. Williams, V. J. Gadgil, J. M. Krougman, and F. P. Ijsseling, Corros Sci. 36, 871 (1994) https://doi.org/10.1016/0010-938X(94)90176-7
  8. K. Ravindranath and S. N. Malhotra, Corros. Sci. 37, 121 (1995). https://doi.org/10.1016/0010-938X(94)00120-U
  9. K. Ravindranath and S. N. Malhotra, Corrosion, 50, 318 (1994). https://doi.org/10.5006/1.3294339
  10. J. S. Kim and H. S. Kwon, Corrosion, 55, 512 (1999) https://doi.org/10.5006/1.3284014
  11. G. T. Burnstein, P. C. Pistorius, and S. P. Mattin, Corros. Sci.35, 57 (1993) https://doi.org/10.1016/0010-938X(93)90133-2
  12. D. L. Reichert, Electrochemical noise measurement for corrosion applications, ASTM STP 1277, Jeffery R. Kearns, John R. Scully, Pierre R. Roberge, David L. Reichert, and John L. Dawson, Eds., p. 79 (1996)
  13. P. C. Pistorius, Electrochemical noise measurement for corrosion applications, ASTM STP 1277, Jeffery R. Kearns, John R. Scully, Pierre R. Roberge, David L. Reichert, and John L. Dawson, Eds., p.343 (1996)
  14. H. Bohni, T. Suter, and A. Schreyer, Electrochim. Acta.40, 1361 (1995)
  15. S. Haykin, Adaptive Filter Theory, second ed., Prentice Hall, Engelwood Cliffs,NJ, p. 798 (1991)
  16. V. M. Salinas-Bravo and R. C. Newman, Corros. Sci. 36, 67 (1994) https://doi.org/10.1016/0010-938X(94)90109-0
  17. J. Hubrecht, R. -W Bosch, J. Chen, W. Bogaerts, and J. H. Zheng, Proceedings, Vol. 1, The11th Asian-Pacific Corrosion Conference, Ho chi minh, Vietnam, p. 126 (1999)
  18. V. T. Borisov, V. M. Golikov, and G. V. Sherbedinskiy, Phys. Met. Metallogr. 22, 175 (1996)
  19. H. M. Lee, S. M. Allen, and M. Grujicic, Met. Trans. 22A, 2869, (1991).
  20. J. E. Shackelford, W. Alexander, and J. S.Park, Materials Science and Engineering Handbook, second ed., CRC Press, Boca Raton, FL, p. 219 (1994)