DOI QR코드

DOI QR Code

Effect of Chemical Passivation Treatment and Flow on the Corrosion of 304 Stainless Steel in Hydrochloric Acid Solution

  • Zhao, Jie (School of Materials Science and Engineering, Dalian University of Technology) ;
  • Cheng, Cong Qian (School of Materials Science and Engineering, Dalian University of Technology) ;
  • Cao, Tie Shan (School of Materials Science and Engineering, Dalian University of Technology)
  • Received : 2015.06.12
  • Accepted : 2015.12.01
  • Published : 2015.12.31

Abstract

Effects of passive film quality by chemical passivation and solution flow on the corrosion behavior of 304 stainless steel in HCl solution were investigated using a coloration indicator, and by corrosion weight loss, electrochemical polarization and element dissolution measurements. A high redness degree suggests a low passive-film integrity for 304 stainless steel following air exposure, while the minimum redness degree for the samples after chemical passivation suggests a high passive-film integrity. In the static condition, samples subjected to air exposure exhibited a high corrosion rate and preferential dissolution of Fe. Chemical passivation inhibited the corrosion rate due to the intrinsically high structural integrity of the passive film and high concentrations of Cr-rich oxides and hydroxide. Solution flow accelerated corrosion by promoting both the anodic dissolution reaction and the cathodic reaction. Solution flow also altered the preferential dissolution to fast uniform dissolution of metal elements.

Keywords

References

  1. S. Aribo, R. Barker, X. Hu, Wear, 302, 1602 (2013). https://doi.org/10.1016/j.wear.2012.12.007
  2. R. J. K. Wood, J. C. Walker, T. J. Harvey, S. Wang, S. S.Rajahram, Wear, 306, 254 (2013). https://doi.org/10.1016/j.wear.2013.08.007
  3. Y. Wang, Y. G. Zheng, W. Kea, W. H. Sun, W. L. Hou, X. C. Chang, J. Q. Wang Corros. Sci., 53, 3177 (2011). https://doi.org/10.1016/j.corsci.2011.05.062
  4. B. T. Lu, L. C. Mao, J. L. Luo, Electrochim. Acta, 56, 85 (2010). https://doi.org/10.1016/j.electacta.2010.09.047
  5. J. A. Wharton, R. J. K. Wood, Wear, 252, 525 (2006).
  6. G. Herting, I. Odnevall Wallinder, C. Leygraf, J. Food Eng., 87, 291 (2008). https://doi.org/10.1016/j.jfoodeng.2007.12.006
  7. P. Agarwal, Srivastava, M. M. Srivasta, S. Prakash, M. Ramanamurthy, R. Shrivast, S. Dass, Sci. Total Environ., 199, 271 (1997). https://doi.org/10.1016/S0048-9697(97)05455-7
  8. N. Soltani, N. Tavakkoli, M. Khayatkashani, M. R. Jalali, A. Mosavizade, Corros. Sci., 62, 122 (2012). https://doi.org/10.1016/j.corsci.2012.05.003
  9. A. S. Fouda, G. Y. El-Ewady, S. Fathy, Desal. Wat. Treat., 51, 2202 (2013). https://doi.org/10.1080/19443994.2012.734730
  10. M. Behpour, S. M. Ghoreishi, N. Soltani, Corros. Sci., 51, 1073 (2009). https://doi.org/10.1016/j.corsci.2009.02.011
  11. C. Q. Cheng, J. Zhao, T. S. Cao, M. K. Lei, D. W. Deng, Corros. Sci., 70, 235 (2013). https://doi.org/10.1016/j.corsci.2013.01.035
  12. T. S. Lee, I. M. Kolthoff, D. L. Leussing, J. Am. Chem. Soc., 70, 2348 (1948). https://doi.org/10.1021/ja01187a012

Cited by

  1. Synthesis, Adsorption Properties and Stability of Cr-Doped Lithium Ion Sieve in Salt Lake Brine vol.92, pp.7, 2015, https://doi.org/10.1246/bcsj.20190061