• 제목/요약/키워드: Prefabricated Beam

검색결과 54건 처리시간 0.02초

Seismic performance of prefabricated reinforced concrete column-steel beam sub-assemblages

  • Bai, Juju;Li, Shengcai
    • Earthquakes and Structures
    • /
    • 제22권2호
    • /
    • pp.203-218
    • /
    • 2022
  • In this paper, quasi-static tests were carried out on three prefabricated reinforced concrete column-steel beam (RCS) sub-assemblages with floor slabs and one comparison specimen without floor slab. The effects of axial compression and floor slab on the seismic performance were studied, and finite element simulations were conducted using ABAQUS. The results showed that the failure of prefabricated RCS sub-assemblages with floor occurred as a joint beam and column failure mode, while failure of sub-assemblages without floor occurred due to beam plastic hinge formation. Compared to the prefabricated RCS sub-assemblages without floor slab, the overall stiffness of the sub-assemblages with floor slab was between 19.2% and 45.4% higher, and the maximum load bearing capacity increased by 26.8%. However, the equivalent viscosity coefficient was essentially unchanged. When the axial compression ratio increased from 0.24 to 0.36, the hysteretic loops of the sub-assemblages with floor became fuller, and the load bearing capacity, ductility, and energy dissipation capacity increased by 12.1%, 12.9% and 8.9%, respectively. Also, the initial stiffness increased by 10.2%, but the stiffness degradation accelerated. The proportion of column drift caused by beam end plastic bending and column end bending changed from 35% and 46% to 47% and 36%, respectively. Comparative finite element analyses indicated that the numerical simulation outcomes agreed well with the experimental results.

Study on seismic performance of connection joint between prefabricated prestressed concrete beams and high strength reinforcement-confined concrete columns

  • Jiang, Haotian;Li, Qingning;Jiang, Weishan;Zhang, De-Yi
    • Steel and Composite Structures
    • /
    • 제21권2호
    • /
    • pp.343-356
    • /
    • 2016
  • As the common cast-in-place construction works fails to meet the enormous construction demand under rapid economic growth, the development of prefabricated structure instead becomes increasingly promising in China. For the prefabricated structure, its load carrying connection joint play a key role in maintaining the structural integrity. Therefore, a novel end plate bolt connecting joint between fully prefabricated pre-stressed concrete beam and high-strength reinforcement-confined concrete column was proposed. Under action of low cycle repeated horizontal loadings, comparative tests are conducted on 6 prefabricated pre-stressed intermediate joint specimens and 1 cast-in-place joint specimen to obtain the specimen failure modes, hysteresis curves, skeleton curves, ductility factor, stiffness degradation and energy dissipation capacity and other seismic indicators, and the seismic characteristics of the new-type prefabricated beam-column connecting joint are determined. The test results show that all the specimens for end plate bolt connecting joint between fully prefabricated pre-stressed concrete beam and high-strength reinforcement-confined concrete column have realized the design objectives of strong column weak beam. The hysteretic curves for specimens are good, indicating desirable ductility and energy dissipation capacity and seismic performances, and the research results provide theoretical basis and technical support for the promotion and application of prefabricated assembly frames in the earthquake zone.

Research on rotation capacity of the new precast concrete assemble beam-column joints

  • Han, Chun;Li, Qingning;Wang, Xin;Jiang, Weishan;Li, Wei
    • Steel and Composite Structures
    • /
    • 제22권3호
    • /
    • pp.613-625
    • /
    • 2016
  • The joints of the new prefabricated concrete assemble beam-column joints are put together by the hybrid joints of inserting steel under post-tensioned and non-prestressed force and both beams and columns adopt prefabricated components. The low cyclic loading test has been performed on seven test specimens of beam-column joints. Based on the experimental result, the rotation capacity of the joints is studied and the $M-{\theta}$ relation curve is obtained. According to Eurocode 3: Design of steel structures and based on the initial rotational stiffness, the joints are divided into three types; by equivalent bending-resistant stiffness to the precast beam, the equivalent modulus of elasticity $E_e$ is elicited with the superposition method; the beam length is figured out that satisfies the rigid joints and after meeting the requirements of application and safety, the new prefabricated concrete assemble beam-column joints can be regarded as the rigid joints; the design formula adopted by the standard of concrete joint classification is theoretically derived, thereby providing a theoretical basis for the new prefabricated concrete structure.

Mechanical behavior of prefabricated steel-concrete composite beams considering the clustering degree of studs

  • Gao, Yanmei;Fan, Liang;Yang, Weipeng;Shi, Lu;Zhou, Dan;Wang, Ming
    • Steel and Composite Structures
    • /
    • 제45권3호
    • /
    • pp.425-436
    • /
    • 2022
  • The mechanical behaviors of the prefabricated steel-concrete composite beams are usually affected by the strength and the number of shear studs. Furthermore, the discrete degree of the arrangement for shear stud clusters, being defined as the clustering degree of shear stud λ in this paper, is an important factor for the mechanical properties of composite beams, even if the shear connection degree is unchanged. This paper uses an experimental and calculation method to investigate the influence of λ on the mechanical behavior of the composite beam. Five specimens (with different λ but having the same shear connection degree) of prefabricated composite beams are designed to study the ultimate supporting capacity, deformation, slip and shearing stiffness of composite beams. Experimental results are compared with the conventional slip calculation method (based on the influence of λ) of prefabricated composite beams. The results showed that the stiffness in the elastoplastic stage is reduced when λ is greater than 0.333, while the supporting capacity of beams has little affected by the change in λ. The slip distribution along the beam length tends to be zig-zagged due to the clustering of studs, and the slip difference increases with the increase of λ.

Cracking of a prefabricated steel truss-concrete composite beam with pre-embedded shear studs under hogging moment

  • Gao, Yanmei;Zhou, Zhixiang;Liu, Dong;Wang, Yinhui
    • Steel and Composite Structures
    • /
    • 제21권5호
    • /
    • pp.981-997
    • /
    • 2016
  • To avoid the cracks of cast-in-place concrete in shear pockets and seams in the traditional composite beam with precast decks, this paper proposed a new type of prefabricated steel truss-concrete composite beam (ab. PSTC beam) with pre-embedded shear studs (ab. PSS connector). To study the initial cracking load of concrete deck, the development and distribution laws of the cracks, 3 PSTC beams were tested under hogging moment. And the crack behavior of the deck was compared with traditional precast composite beam, which was assembled by shear pockets and cast-in-place joints. Results show that: (i) the initial crack appears on the deck, thus avoid the appearance of the cracks in the traditional shear pockets; (ii) the crack of the seam appears later than that of the deck, which verifies the reliability of epoxy cement mortar seam, thus solves the complex structure and easily crack behavior of the traditional cast-in-place joints; (iii) the development and the distribution laws of the cracks in PSTC beam are different from the conventional composite beam. Therefore, in the deduction of crack calculation theory, all the above factors should be considered.

시공오차가 있는 선기초기둥에 공장제작보의 설치가 용이한 탑다운공사용 접합기술개발 (Development of Top-Down Connection System to Solve the Problem of Construction Tolerances in Installing Prefabricated Beams to Pre-founded Columns)

  • 김승원;정희원;박대영;김동건;박주현
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2011년도 춘계 학술논문 발표대회 2부
    • /
    • pp.25-30
    • /
    • 2011
  • Almost prefounded columns for top-down construction certainly have construction tolerances in plan and plumbness. Therefore, it is very difficult to connect prefabricated beams to prefounded columns at each floor level after excavation by usual top-down connection method and this usual connection method leads to long construction time, increasing cost and decreasing quality. This paper presents a new method for connecting prefabricated beam to prefounded column with GROUT-JACKET CONNECTION SYSTEM consisting of sleeve, bearing-shear bands and grout. Details and illustrations of the connections and applications by GROUT-JACKET CONNECTION SYSTEM for the top-down construction are also included in this paper.

  • PDF

Flexural behavior of partially prefabricated partially encased composite beams

  • Liang, Jiong-feng;Zhang, Liu-feng;Yang, Ying-hua;Wei, Li
    • Steel and Composite Structures
    • /
    • 제38권6호
    • /
    • pp.705-716
    • /
    • 2021
  • An innovative partially precast partially encased composite beam (PPECB) is put forward based on the existing research. In order to study the flexural performance of the new composite beam which has precast part and cast-in-place part, six prefabricated specimens and one cast-in-place specimen are designed with considering the influence of the production method, the steel flange thickness, the concrete strength grade and the stirrup process on the behavior of the composite beam. Through four points loading and test data collection and analysis, the behavior of partially prefabricated specimen is similar to that of cast-in-place specimen, and the casting method, the thickness of the steel flange, the concrete strength grade and the stirrup process have different influence on the crack, yield and peak load bearing capacity of the component. Finally, the calculation theory of plastic bending of partially precast partially encased concrete composite beams is given. The calculation results are in good agreement with the experimental results, which can be used for practical engineering theory guidance. This paper can provide reference value for further research and engineering application.

Assessment of vertical root fracture using cone-beam computed tomography

  • Moudi, Ehsan;Haghanifar, Sina;Madani, Zahrasadat;Alhavaz, Abdolhamid;Bijani, Ali;Bagheri, Mohammad
    • Imaging Science in Dentistry
    • /
    • 제44권1호
    • /
    • pp.37-41
    • /
    • 2014
  • Purpose: The aim of this study was to investigate the accuracy of cone-beam computed tomography (CBCT) in the diagnosis of vertical root fractures in a tooth with gutta-percha and prefabricated posts. Materials and Methods: This study selected 96 extracted molar and premolar teeth of the mandible. These teeth were divided into six groups as follows: Groups A, B, and C consisted of teeth with vertical root fractures, and groups D, E, and F had teeth without vertical root fractures; groups A and D had teeth with gutta-percha and prefabricated posts; groups B and E had teeth with gutta-percha but without prefabricated posts, and groups C and F had teeth without gutta-percha or prefabricated posts. Then, the CBCT scans were obtained and examined by three oral and maxillofacial radiologists in order to determine the presence of vertical root fractures. The data were analyzed using IBM SPSS 20.0 (IBM Corp., Armonk, NY, USA). Results: The kappa coefficient was $0.875{\pm}0.049$. Groups A and D showed a sensitivity of 81% and a specificity of 100%; groups E and B, a sensitivity of 94% and a specificity of 100%; and groups C and F, a sensitivity of 88% and a specificity of 100%. Conclusion: The CBCT scans revealed a high accuracy in the diagnosis of vertical root fractures; the accuracy did not decrease in the presence of gutta-percha. The presence of prefabricated posts also had little effect on the accuracy of the system, which was, of course, not statistically significant.

Investigation of semi-rigid bolted beam connections on prefabricated frame joints

  • Irtem, E.;Turker, K.
    • Structural Engineering and Mechanics
    • /
    • 제12권4호
    • /
    • pp.397-408
    • /
    • 2001
  • Bolted connections are used commonly in the precast reinforced concrete structures. In such structures, to perform structural analysis, behaviour of connections must be determined. In this study, elastic rotation stiffness of semi-rigid bolted beam connections, applied in industrial precast structures, are determined by finite element methods. The results obtained from numerical solutions are compared with an experimental study carried out for the same connections. Furthermore, stress distributions of the connection zone are determined and a reinforcement scheme is proposed. Thus, a more appropriate reinforcement arrangement for the connection zone is enabled. The connection joint of the prefabricated frame is described as rigid, hinged or elastic, and a static analysis of the frame system is performed for each case. Values of bending moments and displacements obtained from the three solutions are compared and the effects of elastic connection are discussed.

Upgrading flexural performance of prefabricated sandwich panels under vertical loading

  • Kabir, M.Z.;Rezaifar, O.;Rahbar, M.R.
    • Structural Engineering and Mechanics
    • /
    • 제26권3호
    • /
    • pp.277-295
    • /
    • 2007
  • 3-D wall panels are used in construction of exterior and interior bearing and non-load bearing walls and floors of building of all types of construction. Fast construction, thermal insulation, reduced labor expense and weight saving are the most well pronounced advantage of such precast system. When the structural performance is concerned, the main disadvantage of 3D panel, when used as floor slab, is their brittleness in flexure. The current study focuses on upgrading ductility and load carrying capacity of 3D slabs in two different ways; using additional tension reinforcement, and inserting a longitudinal concentrated beam. The research is carried on both experimentally and numerically. The structural performance in terms of load carrying capacity and flexural ductility are discussed in details. The obtained results could give better understanding and design consideration of such prefabricated system.