• Title/Summary/Keyword: Preemptive scheduling

Search Result 44, Processing Time 0.032 seconds

The Performance Analysis of CPU scheduling Algorithms in Operating Systems

  • Thangakumar Jeyaprakash;Ranjana P;Sambath M
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.7
    • /
    • pp.165-170
    • /
    • 2023
  • Scheduling algorithms plays a significant role in optimizing the CPU in operating system. Each scheduling algorithms schedules the processes in the ready queue with its own algorithm design and its properties. In this paper, the performance analysis of First come First serve scheduling, Non preemptive scheduling, Preemptive scheduling, Shortest Job scheduling and Round Robin algorithm has been discussed with an example and the results has been analyzed with the performance parameters such as minimum waiting time, minimum turnaround time and Response time.

Study on Preemptive Real-Time Scheduling Strategy for Wireless Sensor Networks

  • Zhi-bin, Zhao;Fuxiang, Gao
    • Journal of Information Processing Systems
    • /
    • v.5 no.3
    • /
    • pp.135-144
    • /
    • 2009
  • Most of the tasks in wireless sensor networks (WSN) are requested to run in a real-time way. Neither EDF nor FIFO can ensure real-time scheduling in WSN. A real-time scheduling strategy (RTS) is proposed in this paper. All tasks are divided into two layers and endued diverse priorities. RTS utilizes a preemptive way to ensure hard real-time scheduling. The experimental results indicate that RTS has a good performance both in communication throughput and over-load.

Non-Preemptive Fixed Priority Scheduling for Design of Real-Time Embedded Systems (실시간 내장형 시스템의 설계를 위할 비선점형 고정우선순위 스케줄링)

  • Park, Moon-Ju
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.15 no.2
    • /
    • pp.89-97
    • /
    • 2009
  • Embedded systems widely used in ubiquitous environments usually employ an event-driven programming model instead of thread-based programming model in order to create a more robust system that uses less memory. However, as the software for embedded systems becomes more complex, it becomes hard to program as a single event handler using the event-driven programming model. This paper discusses the implementation of non-preemptive real-time scheduling theory for the design of embedded systems. To this end, we present an efficient schedulability test method for a given non-preemptive task set using a sufficient condition. This paper also shows that the notion of sub-tasks in embedded systems can overcome the problem of low utilization that is a main drawback of non-preemptive scheduling.

A Task Group-based Real-Time Scheduling Technique m the Non-Preemptive TinyOS (비선점 환경의 TinyOS에서 실시간성을 고려한 태스크 그룹 기반의 스케줄링 기법)

  • Son, Chi-Won;Tak, Sung-Woo
    • Journal of Korea Multimedia Society
    • /
    • v.13 no.9
    • /
    • pp.1285-1298
    • /
    • 2010
  • Since the TinyOS incorporating a non-preemptive task scheduling policy uses a FIFO (First-In First-Out) queue, a task with the highest priority cannot preempt a task with lower priority before the task with lower priority must run to completion. Therefore, the non-preemptive TinyOS cannot guarantee the completion of real-time user tasks within their deadlines. Additionally, the non-preemptive TinyOS needs to meet the deadlines of user tasks as well as those of TinyOS platform tasks called by user tasks in order to guarantee the deadlines of the real-time services requested by user tasks. In this paper, we present a group-based real-time scheduling technique that makes it possible to guarantee the deadlines of real-time user tasks in the TinyOS incorporating a non-preemptive task scheduling policy. The proposed technique groups together a given user task and TinyOS platform tasks called and activated by the user task, and then schedule them as a virtual big task. A case study shows that the proposed technique yields efficient performance in terms of guaranteeing the completion of user tasks within their deadlines and aiming to provide them with good average response time, while maintaining the compatibility of the existing non-preemptive TinyOS platform.

Effective Real-Time Scheduling in Composite Task Model (복합 태스크 모델에 대한 효율적인 실시간 스케쥴링)

  • Kim, In-Guk
    • The Transactions of the Korea Information Processing Society
    • /
    • v.3 no.6
    • /
    • pp.1568-1579
    • /
    • 1996
  • Most of the real-time scheduling algorithms assume that all tasks are either preemptive or nonpreemptive. In this paper, we present a real-time scheduling algorithm for the more generalized task model in which each task contains both preemptive and nonpreemptive subtasks in a single processor environment. If the task set is found to be scheduling by the method of Harbour et al, it is also found to be scheduling by the proposed method. A simulation is used ti compare two methods and the result shows the maximum of 45% difference between them in their effectiveness.

  • PDF

Heuristic Procedure on Minimizing Makespan for Preemptive Sequence Dependent Job Scheduling with Parallel Identical Machines (일시(一時) 작업중단(作業中斷)을 허용(許容)하는 순서종속작업(順序從屬作業)을 병행기계(並行機械)로서 makespan 최소화(最小化)를 도모(圖謀)하는 발견적(發見的) 방법(方法))

  • Won, Jin-Hui;Kim, Man-Sik
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.13 no.2
    • /
    • pp.35-46
    • /
    • 1987
  • To minimize makespan for preemptive sequence dependent job scheduling with parallel identical processors, fundamental results, as the basis of new algorithm to be presented, such as McNauton's algorithm for independent jobs, Hu's characterization for dependent jobs, and Muntz-Coffman's algorithm, were first introduced. Then a huristic procedure was presented applying those concepts of zoning of assembly line balancing and of resource leveling on CPM network scheduling with two or more of parallel machines in general. New procedure has eliminated presumative machine assignment using ${\rho}$, rate of resource capability (${\rho}$ < 1), for practical scheduling.

  • PDF

Online Non-preemptive Deadline Scheduling for Weighted Jobs (가중치 작업들의 온라인 비선점 마감시한 스케줄링)

  • Kim Jae-Hoon;Chang Jung-Hwan
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.32 no.2
    • /
    • pp.68-74
    • /
    • 2005
  • In deadline scheduling, jobs have deadlines by which they are completed. The scheduling algorithm determines which jobs are executed at each time. Then only the completed jobs contribute to the throughput or gain of the algorithm. The jobs have arbitrary weights and the gain of the algorithm is given as the sum of weights of the completed jobs. The goal of the scheduling algorithm is to maximize its gain. In this paper, we consider online non-preemptive scheduling, where jobs arrive online and the scheduling algorithm has no information about jobs arriving ahead. Also the jobs cannot be preempted or rejected while they are executed. For this problem, we obtain lower bounds for any online algorithms and also we propose an optimal online algorithm meeting the lower bounds.

Improved Schedulability Analysis of Real-Time Sporadic Tasks with EDF Preemptive Scheduling

  • Darbandi, Armaghan;Kim, Myung-Kyun
    • Journal of information and communication convergence engineering
    • /
    • v.10 no.4
    • /
    • pp.396-404
    • /
    • 2012
  • This paper proposes an analysis method to check the schedulability of a set of sporadic tasks under earliest deadline first (EDF) scheduler. The sporadic task model consists of subtasks with precedence constraints, arbitrary arrival times and deadlines. In order to determine the schedulability, we present an approach to find exact worst case response time (WCRT) of subtatsks. With the technique presented in this paper, we exploit the precedence relations between subtasks in an accurate way while taking advantage of the deadline of different subtasks. Another nice feature of our approach is that it avoids calculation time overhead by exploiting the concept of deadline busy period. Experimental results show that this consideration leads to a significant improvement compared with existing work.

STOCHASTIC SINGLE MACHINE SCHEDULING SUBJECT TO MACHINES BREAKDOWNS WITH QUADRATIC EARLY-TARDY PENALTIES FOR THE PREEMPTIVE-REPEAT MODEL

  • Tang, Hengyong;Zhao, Chuanli
    • Journal of applied mathematics & informatics
    • /
    • v.25 no.1_2
    • /
    • pp.183-199
    • /
    • 2007
  • In this paper we research the problem in which the objective is to minimize the sum of squared deviations of job expected completion times from the due date, and the job processing times are stochastic. In the problem the machine is subject to stochastic breakdowns and all jobs are preempt-repeat. In order to show that the replacing ESSD by SSDE is reasonable, we discuss difference between ESSD function and SSDE function. We first give an express of the expected completion times for both cases without resampling and with resampling. Then we show that the optimal sequence of the problem V-shaped with respect to expected occupying time. A dynamic programming algorithm based on the V-shape property of the optimal sequence is suggested. The time complexity of the algorithm is pseudopolynomial.

Development of an Extended EDS Algorithm for CAN-based Real-Time System

  • Lee, Byong-Hoon;Kim, Dae-Won;Kim, Hong-Ryeol
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.60.3-60
    • /
    • 2001
  • Usually the static scheduling algorithms such as DMS(Deadline Monotonic Scheduling) or RMS(Rate Monotonic Scheduling) are used for CAN scheduling due to its ease with implementation. However, due to their inherently low utilization of network media, some dynamic scheduling approaches have been studied to enhance the utilization. In case of dynamic scheduling algorithms, two considerations are needed. The one is a priority inversion due to rough deadline encoding into stricted arbitration fields of CAN. The other is an arbitration delay due to the non-preemptive feature of CAN. In this paper, an extended algorithm is proposed from an existing EDS(Earliest Deadline Scheduling) approach of CAN scheduling algorithm having a solution to the priority inverstion ....

  • PDF