• 제목/요약/키워드: Predictive System

검색결과 1,206건 처리시간 0.028초

A novel smart criterion of grey-prediction control for practical applications

  • Z.Y. Chen;Ruei-yuan Wang;Yahui Meng;Timothy Chen
    • Smart Structures and Systems
    • /
    • 제31권1호
    • /
    • pp.69-78
    • /
    • 2023
  • The purpose of this paper is to develop a scalable grey predictive controller with unavoidable random delays. Grey prediction is proposed to solve problems caused by incorrect parameter selection and to eliminate the effects of dynamic coupling between degrees of freedom (DOFs) in nonlinear systems. To address the stability problem, this study develops an improved gray-predictive adaptive fuzzy controller, which can not only solve the implementation problem by determining the stability of the system, but also apply the Linear Matrix Inequality (LMI) law to calculate Fuzzy change parameters. Fuzzy logic controllers manipulate robotic systems to improve their control performance. The stability is proved using Lyapunov stability theorem. In this article, the authors compare different controllers and the proposed predictive controller can significantly reduce the vibration of offshore platforms while keeping the required control force within an ideal small range. This paper presents a robust fuzzy control design that uses a model-based approach to overcome the effects of modeling errors. To guarantee the asymptotic stability of large nonlinear systems with multiple lags, the stability criterion is derived from the direct Lyapunov method. Based on this criterion and a distributed control system, a set of model-based fuzzy controllers is synthesized to stabilize large-scale nonlinear systems with multiple delays.

지연된 다중 입력을 갖는 시스템을 안정화하는 출력 궤환 예측 제어 (An Output Feedback Predictive Control for Stabilizing a System With Multiple Delayed Inputs)

  • 양장훈
    • 한국항행학회논문지
    • /
    • 제23권5호
    • /
    • pp.424-429
    • /
    • 2019
  • 5G의 상용화 등 네트워킹 기술의 발전은 다양한 시스템들이 네트워크를 통해서 정보를 교환하고 제어할 수 있는 기반을 제공하고 있다. 또한, 네트워크에서 발생하는 많은 현상들은 정보의 지연과 관련되기 때문에 지연된 정보를 갖는 시스템의 제어의 중요성이 증가하고 있다. 본 논문에서는 최근들어 지연이 있을 때에 저복잡도 제어기 설계에 많이 활용되는 예측 제어를 도입하여, 지연된 다중 입력을 갖는 시스템에서 지연의 크기와 입력의 수에 상관없이 거의 일정한 복잡도를 갖는 예측 제어기를 제시한다. 또한, 출력 궤환 구조를 갖는 예측 제어기가 점근적 수렴이 보장됨을 증명한다. 모의 실험을 통해서 제안된 방식이 상태 벡터를 확장한 전통적인 방식이나, 다른 예측 기반 제어 방식에 비해 적은 복잡도를 가지면서 안정성을 보장하는 제어기 설계 성공이 높게 발생함을 확인하였다.

An integral square error-based model predictive controller for two area load frequency control

  • Kassem, Ahmed M.;Sayed, Khairy;El-Zohri, Emad H.;Ali, Hossam H.
    • Advances in Energy Research
    • /
    • 제5권1호
    • /
    • pp.79-90
    • /
    • 2017
  • The main objective of load frequency control (LFC) is to keep the frequency value at nominal value and force deviation of the frequency to zero in case of load change. This paper suggests LFC by using a model predictive control (MPC), based on Integral Square Error (ISE) method designed to optimize the damping of oscillations in a two-area power system. The MPC is designed and simulated with a model system in state space, for robust performance in the system response. The proposed MPC is tuned by ISE to achieve superior efficiency. Moreover, its performance has been assessed and compared with the PI and PID conventional controllers. The settling time and overshoot with MPC are extremely minimized as compared with conventional controllers.

Integrating Fuzzy based Fault diagnosis with Constrained Model Predictive Control for Industrial Applications

  • Mani, Geetha;Sivaraman, Natarajan
    • Journal of Electrical Engineering and Technology
    • /
    • 제12권2호
    • /
    • pp.886-889
    • /
    • 2017
  • An active Fault Tolerant Model Predictive Control (FTMPC) using Fuzzy scheduler is developed. Fault tolerant Control (FTC) system stages are broadly classified into two namely Fault Detection and Isolation (FDI) and fault accommodation. Basically, the faults are identified by means of state estimation techniques. Then using the decision based approach it is isolated. This is usually performed using soft computing techniques. Fuzzy Decision Making (FDM) system classifies the faults. After identification and classification of the faults, the model is selected by using the information obtained from FDI. Then this model is fed into FTC in the form of MPC scheme by Takagi-Sugeno Fuzzy scheduler. The Fault tolerance is performed by switching the appropriate model for each identified faults. Thus by incorporating the fuzzy scheduled based FTC it becomes more efficient. The system will be thereafter able to detect the faults, isolate it and also able to accommodate the faults in the sensors and actuators of the Continuous Stirred Tank Reactor (CSTR) process while the conventional MPC does not have the ability to perform it.

The Lower Flash Points of the n-Butanol+n-Decane System

  • Dong-Myeong Ha;Yong-Chan Choi;Sung-Jin Lee
    • 한국화재소방학회논문지
    • /
    • 제17권2호
    • /
    • pp.50-55
    • /
    • 2003
  • The lower flash points for the binary system, n-butanol+n-decane, were measured by Pensky-Martens closed cup tester. The experimental results showed the minimum in the flash point versus composition curve. The experimental data were compared with the values calculated by the reduced model under an ideal solution assumption and the flash point-prediction models based on the Van Laar and Wilson equations. The predictive curve based upon the reduced model deviated form the experimental data for this system. The experimental results were in good agreement with the predictive curves, which use the Van Laar and Wilson equations to estimate activity coefficients. However, the predictive curve of the flash point prediction model based on the Willson equation described the experimentally-derived data more effectively than that of the flash point prediction model based on the Van Laar equation.

트랜스퍼 그레인을 위한 예측제어기 설계에 관한 연구 (A Study on Design of Predictive Controler for Transfer Crane)

  • 한승훈;서정현;이진우;이권순
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2006년도 제37회 하계학술대회 논문집 D
    • /
    • pp.1907-1908
    • /
    • 2006
  • Recently, an automatic crane control system is required with high speed and rapid transportation. Therefore, when container is transferred from the initial coordinate to the finial coordinate, the container paths should be built in terms of the least time and without sway. Therefore, we calculated the anti-collision path for avoiding collision in its movement to the finial coordinate in this paper. And we constructed the neural network predictive two degree of freedom PID controller to control the precise navigation. The proposed predictive control system is composed of the neural network predictor, two degree of freedom PID controller, neural network self-tuner which yields parameters of two degree of freedom PID. We analyzed crane system through simulation, and proved excellency of control performance over the conventional controllers.

  • PDF

Predictive Control of Telerobot with Time Delay

  • Yoon, In-Hyung;Kim, Jung-Kwan;Han, Myung-Chul
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2001년도 ICCAS
    • /
    • pp.166.5-166
    • /
    • 2001
  • In the teleoperation system, force, position and velocity signals are communicated between master and slave arm. The addition of force feedback for the teleoperation system benefits the operator by providing more information to perform given tasks especially for tasks requiring contact with environment. When the master and slave arms are located in different places, time delay is unavoidable. Also it is well known that the system can become unstable when a time delay exists in the communication channel. The proposed control strategy is to use predictive control method(MBPC). The predictive controller is used to control teleoperation´s position and force control. Also it is used to overcome time delay.

  • PDF

나선 예측 모델에서의 비행체 하중수 및 각속도 최적 제어에 의한 제어성과 안정성 성능에 관한 연구 (A Study for Controllability, Stability by Optimal Control of Load and Angular Velocity of Flying Objects using the Spiral Predictive Model(SPM))

  • 왕현민
    • 제어로봇시스템학회논문지
    • /
    • 제13권3호
    • /
    • pp.268-272
    • /
    • 2007
  • These days many scientists make studies of feedback control system for stability on non-linear state and for the maneuver of flying objects. These feedback control systems have to satisfy trajectory condition and angular conditions, that is to say, controllability and stability simultaneously to achieve mission. In this paper, a design methods using model based control system which consists of spiral predictive model, Q-function included into generalized-work function is shown. It is made a clear that the proposed algorithm using SPM maneuvers for controllability and stability at the same time is successful in attaining our purpose. The feature of the proposed algorithm is illustrated by simulation results. As a conclusion, the proposed algorithm is useful for the control of moving objects.

펄스응답 순환행렬의 특이치 분해를 이용한 강인한 차수감소 모델예측제어기의 설계 (Design of Robust Reduced-Order Model Predictive Control using Singular Value Decomposition of Pulse Response Circulant Matrix)

  • 김상훈;문혜진;이광순
    • 제어로봇시스템학회논문지
    • /
    • 제4권4호
    • /
    • pp.413-419
    • /
    • 1998
  • A novel order-reduction technique for model predictive control(MPC) is proposed based on the singular value decomposition(SVD) of a pulse response circulant matrix(PRCM) of a concerned system. It is first investigated that the PRCM (in the limit) contains a complete information of the frequency response of a system and its SVD decomposes the information into the respective principal directions at each frequency. This enables us to isolate the significant modes of the system and to devise the proposed order-reduction technique. Though the primary purpose of the proposed technique is to diminish the required computation in MPC, the clear frequency decomposition of the SVD of the PRCM also enables us to improve the robustness through selective excitation of frequency modes. Performance of the proposed technique is illustrated through two numerical examples.

  • PDF

Robust Predictive Control of Uncertain Nonlinear System With Constrained Input

  • Son, Won-Kee;Park, Jin-Young;Kwon, Oh-Kyu
    • Transactions on Control, Automation and Systems Engineering
    • /
    • 제4권4호
    • /
    • pp.289-295
    • /
    • 2002
  • In this paper, a linear matrix inequality(LMI)-based robust control method, which combines model predictive control(MPC) with the feedback linearization(FL), is presented for constrained nonlinear systems with parameter uncertainty. The design procedures consist of the following 3 steps: Polytopic description of nonlinear system with a parameter uncertainty via FL, Mapping of actual input constraint by FL into constraint on new input of linearized system, Optimization of the constrained MPC problem based on LMI. To verify the performance and usefulness of the control method proposed in this paper, some simulations with application to a flexible single link manipulator are performed.