• Title/Summary/Keyword: Predictive Controls

Search Result 87, Processing Time 0.027 seconds

Receding horizon predictive controls and generalized predictive controls with their equivalance and stability

  • Kwon, Wook-Hyun;Lee, Young-Il
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1992.10b
    • /
    • pp.49-55
    • /
    • 1992
  • In this paper, we developed a Receding Horizon Predictive Control for Stochastic state space models(RHPCS). RHPCS was designed to minimize a quadratic cost function. RHPCS consists of Receding Horizon Tracking Control(RHTC) and a state observer. It was shown that RHPCS is equivalent to Generalized Predictive Control(GPC) when the underlying state space model is equivalent to the I/O model used in the design of GPC. The equivalence between GPC and RHPCS was shown through. the comparison of the transfer functions of the two controllers. RHPCS provides a time-invarient optimal control law for systems for which GPC can not be used. The stability properties of RHPCS was derived. From the GPC's equivalence to RHPCS, the stability properties of GPC were shown to be the same as those for RHTC.

  • PDF

A Generalized Predictive Self-Tuning Control Using Mean Horizon Control Method (Mean Horizon 제어방식을 사용한 일반화 예측 자기동조 제어)

  • Park, Juong-Il;Chung, Jong-Dae;Park, Keh-Kun
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.25 no.9
    • /
    • pp.1039-1045
    • /
    • 1988
  • In the original incremental generalized predictive control, the receding horizon predictive control is introduced as a control law. But in this paper, we propose a generalized predictive self-tuning control using full-valued incremental controls. The control law is a mean horizon predictive control. The effectiveness of this algorithm in a variable time delay or load disturbances environment is demonstrated by computer simulation. The controlled plant is a nonminimum phase system.

  • PDF

Controls Methods Review of Single-Phase Boost PFC Converter : Average Current Mode Control, Predictive Current Mode Control, and Model Based Predictive Current Control

  • Hyeon-Joon Ko;Yeong-Jun Choi
    • Journal of the Korea Society of Computer and Information
    • /
    • v.28 no.12
    • /
    • pp.231-238
    • /
    • 2023
  • For boost PFC (Power Factor Correction) converters, various control methods are being studied to achieve unity power factor and low THD (Total Harmonic Distortion) of AC input current. Among them, average current mode control, which controls the average value of the inductor current to follow the current reference, is the most widely used. However, nowadays, as advanced digital control becomes possible with the development of digital processors, predictive control of boost PFC converters is receiving attention. Predictive control is classified into predictive current mode control, which generates duty in advance using a predictive algorithm, and model predictive current control, which performs switching operations by selecting a cost function based on a model. Therefore, this paper simply explains the average current mode control, predictive current mode control, and model predictive current control of the boost PFC converter. In addition, current control under entire load and disturbance conditions is compared and analyzed through simulation.

The Design of DEI Controls using Neural Network (인공신경망을 이용한 EDI 통제방안 설계)

  • Sang-Jae Lee;In-Goo Han
    • Journal of Intelligence and Information Systems
    • /
    • v.5 no.1
    • /
    • pp.35-48
    • /
    • 1999
  • Many organizational contexts should be considered in designing EDI controls to make control systems effective and efficient. This paper gives a description of the neural network model for suggesting the extent of effective EDI controls for a company that has specific organizational environment. Feedforward backpropagation neural network models are designed to predict the state of 12 modes of EDI controls from the sate of environment. The predictive power of the system is compared with that of multivariate regression analysis to evaluate the effectiveness of using neural network model in predicting the level of EDI controls. The results show that the neural network model outperforms regression analysis in predictive accuracy. The controls that have high estimated value in the model are likely to be critical controls and EDI auditor or management can enhance investment of IS resources to enhance these controls.

  • PDF

Input Variable Decision of the Predictive Model for the Optimal Starting Moment of the Cooling System in Accommodations (숙박시설 냉방 시스템의 최적 작동 시점 예측 모델 개발을 위한 입력 변수 선정)

  • Baik, Yong Kyu;Yoon, Younju;Moon, Jin Woo
    • KIEAE Journal
    • /
    • v.15 no.4
    • /
    • pp.105-110
    • /
    • 2015
  • Purpose: This study aimed at finding the optimal input variables of the artificial neural network-based predictive model for the optimal controls of the indoor temperature environment. By applying the optimal input variables to the predictive model, the required time for restoring the current indoor temperature during the setback period to the normal setpoint temperature can be more precisely calculated for the cooling season. The precise prediction results will support the advanced operation of the cooling system to condition the indoor temperature comfortably in a more energy-efficient manner. Method: Two major steps employing the numerical computer simulation method were conducted for developing an ANN model and finding the optimal input variables. In the first process, the initial ANN model was intuitively determined to have input neurons that seemed to have a relationship with the output neuron. The second process was conducted for finding the statistical relationship between the initial input variables and output variable. Result: Based on the statistical analysis, the optimal input variables were determined.

A Modeling of Proportional Pressure Control Valve and its Control (비례전자 감압밸브의 모델링과 제어)

  • Yang, K.U.;Lee, I.Y.
    • Journal of Power System Engineering
    • /
    • v.6 no.3
    • /
    • pp.71-77
    • /
    • 2002
  • In this study, a dynamic model of proportional pressure control valve using the bond graph and a predictive controller are presented in the form of dynamic matrix control which is concerned with a design method of digital controller for the electro hydraulic servo system. The bond graph can be utilized for all types of systems which involve power and energy, and it is applied to a propotional pressure control valve in this study. Recently, many researchers suggested that better control performance could be obtained by means of the predictive controls with future reference input, future control output and future control error. The Predictive controller is very practical because the controller can be easily applicable to a personal computer or a microprocessor. This study investigates through numerical simulations that hydraulic system with the predictive controller shows very good control performances.

  • PDF

Advances in Nonlinear Predictive Control: A Survey on Stability and Optimality

  • Kwon, Wook-Hyun;Han, Soo-Hee;Ahn, Choon-Ki
    • International Journal of Control, Automation, and Systems
    • /
    • v.2 no.1
    • /
    • pp.15-22
    • /
    • 2004
  • Some recent advances in stability and optimality for the nonlinear receding horizon control (NRHC) or the nonlinear model predictive control (NMPC) are assessed. The NRHCs with terminal conditions are surveyed in terms of a terminal state equality constraint, a terminal cost, and a terminal constraint set. Other NRHCs without terminal conditions are surveyed in terms of a control Lyapunov function (CLF) and cost monotonicity. Additional approaches such as output feedback, fuzzy, and neural network are introduced. This paper excludes the results for linear receding horizon controls and concentrates only on the analytical results of NRHCs, not including applications of NRHCs. Stability and optimality are focused on rather than robustness.

High Performance Current Controller for Sparse Matrix Converter Based on Model Predictive Control

  • Lee, Eunsil;Lee, Kyo-Beum;Lee, Young Il;Song, Joong-Ho
    • Journal of Electrical Engineering and Technology
    • /
    • v.8 no.5
    • /
    • pp.1138-1145
    • /
    • 2013
  • A novel predictive current control strategy for a sparse matrix converter is presented. The sparse matrix converter is functionally-equivalent to the direct matrix converter but has a reduced number of switches. The predictive current control uses a model of the system to predict the future value of the load current and generates the reference voltage vector that minimizes a given cost function so that space vector modulation is achieved. The results show that the proposed controller for sparse matrix converters controls the load current very effectively and performs very well through simulation and experimental results.

A Study on Predictive Fuzzy Control Algorithm for Elevator Group Supervisory System (엘리버이터 군관리 시스템을 위한 예견퍼지 제어 알고리즘에 관한 연구)

  • Choi, Don;Park, Hee-Chul;Woo, Kang-Bang
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.43 no.4
    • /
    • pp.627-637
    • /
    • 1994
  • In this study, a predictive fuzzy control algorithm to supervise the elevator system with plural cars is developed and its performance is evaluated. The proposed algorithm is based on fuzzy in-ference system to cope with multiple control objects and uncertainty of system state. The control objects are represented as linguistic predictive fuzzy rules and simplified reasoning method is utilized as a fuzzy inference method. Real-time simulation is performed with respect o all possible modes of control, and the resultant controls ard predicted. The predicted rusults are then utilized as the control in-puts of the fuzzy rules. The feasibility of the proposed control algorithm is evaluated by graphic simulator on computer. Finallu, the results of graphic simulation is compared with those of a conventional group control algorighm.

  • PDF

Receding horizon tracking controller and its stability properties

  • Kwon, Wook-Hyun;Byun, Dae-Gyu
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1987.10a
    • /
    • pp.801-806
    • /
    • 1987
  • The receding horizon tracking control for the discrete time invariant systems is presented in this paper. This control law is derived with the receding horizon concept from the standard tracking problems. Stability properties of this control law are analyzed. It is shown that there exists a finite horizon index for which the closed loop systems are always asymptotically stable. The receding horizon tracking control is a kind of predictive control and will add a new clan to many existing predictive controls, with which some comparisons are made.

  • PDF