• Title/Summary/Keyword: Prediction risk

Search Result 1,085, Processing Time 0.028 seconds

Pure additive contribution of genetic variants to a risk prediction model using propensity score matching: application to type 2 diabetes

  • Park, Chanwoo;Jiang, Nan;Park, Taesung
    • Genomics & Informatics
    • /
    • v.17 no.4
    • /
    • pp.47.1-47.12
    • /
    • 2019
  • The achievements of genome-wide association studies have suggested ways to predict diseases, such as type 2 diabetes (T2D), using single-nucleotide polymorphisms (SNPs). Most T2D risk prediction models have used SNPs in combination with demographic variables. However, it is difficult to evaluate the pure additive contribution of genetic variants to classically used demographic models. Since prediction models include some heritable traits, such as body mass index, the contribution of SNPs using unmatched case-control samples may be underestimated. In this article, we propose a method that uses propensity score matching to avoid underestimation by matching case and control samples, thereby determining the pure additive contribution of SNPs. To illustrate the proposed propensity score matching method, we used SNP data from the Korea Association Resources project and reported SNPs from the genome-wide association study catalog. We selected various SNP sets via stepwise logistic regression (SLR), least absolute shrinkage and selection operator (LASSO), and the elastic-net (EN) algorithm. Using these SNP sets, we made predictions using SLR, LASSO, and EN as logistic regression modeling techniques. The accuracy of the predictions was compared in terms of area under the receiver operating characteristic curve (AUC). The contribution of SNPs to T2D was evaluated by the difference in the AUC between models using only demographic variables and models that included the SNPs. The largest difference among our models showed that the AUC of the model using genetic variants with demographic variables could be 0.107 higher than that of the corresponding model using only demographic variables.

Modeling the Fate of Priority Pharmaceuticals in Korea in a Conventional Sewage Treatment Plant

  • Kim, Hyo-Jung;Lee, Hyun-Jeoung;Lee, Dong-Soo;Kwon, Jung-Hwan
    • Environmental Engineering Research
    • /
    • v.14 no.3
    • /
    • pp.186-194
    • /
    • 2009
  • Understanding the environmental fate of human and animal pharmaceuticals and their risk assessment are of great importance due to their growing environmental concerns. Although there are many potential pathways for them to reach the environment, effluents from sewage treatment plants (STPs) are recognized as major point sources. In this study, the removal efficiencies of the 43 selected priority pharmaceuticals in a conventional STP were evaluated using two simple models: an equilibrium partitioning model (EPM) and STPWIN$^{TM}$ program developed by US EPA. It was expected that many pharmaceuticals are not likely to be removed by conventional activated sludge processes because of their relatively low sorption potential to suspended sludge and low biodegradability. Only a few pharmaceuticals were predicted to be easily removed by sorption or biodegradation, and hence a conventional STP may not protect the environment from the release of unwanted pharmaceuticals. However, the prediction made in this study strongly relies on sorption coefficient to suspended sludge and biodegradation half-lives, which may vary significantly depending on models. Removal efficiencies predicted using the EPM were typically higher than those predicted by STPWIN for many hydrophilic pharmaceuticals due to the difference in prediction method for sorption coefficients. Comparison with experimental organic carbon-water partition coefficients ($K_{ocs}) revealed that log KOW-based estimation used in STPWIN is likely to underestimate sorption coefficients, thus resulting low removal efficiency by sorption. Predicted values by the EPM were consistent with limited experimental data although this model does not include biodegradation processes, implying that this simple model can be very useful with reliable Koc values. Because there are not many experimental data available for priority pharmaceuticals to evaluate the model performance, it should be important to obtain reliable experimental data including sorption coefficients and biodegradation rate constants for the prediction of the fate of the selected pharmaceuticals.

3D Terrain Model Application for Explosion Assessment

  • Kim, Hyung-Seok;Chang, Eun-Mi;Kim, In-Won
    • 한국지역지리학회:학술대회
    • /
    • 2009.08a
    • /
    • pp.108-115
    • /
    • 2009
  • An increase in oil and gas plants caused by development of process industry have brought into the increase in use of flammable and toxic materials in the complex process under high temperature and pressure. There is always possibility of fire and explosion of dangerous chemicals, which exist as raw materials, intermediates, and finished goods whether used or stored in the industrial plants. Since there is the need of efforts on disaster damage reduction or mitigation process, we have been conducting a research to relate explosion model on the background of real 3D terrain model. By predicting the extent of damage caused by recent disasters, we will be able to improve efficiency of recovery and, sure, to take preventive measure and emergency counterplan in response to unprepared disaster. For disaster damage prediction, it is general to conduct quantitative risk assessment, using engineering model for environmentaldescription of the target area. There are different engineering models, according to type of disaster, to be used for industry disaster such as UVCE (Unconfined Vapor Cloud Explosion), BLEVE (Boiling Liquid Evaporation Vapor Explosion), Fireball and so on, among them.we estimate explosion damage through UVCE model which is used in the event of explosion of high frequency and severe damage. When flammable gas in a tank is released to the air, firing it brings about explosion, then we can assess the effect of explosion. As 3D terrain information data is utilized to predict and estimate the extent of damage for each human and material. 3D terrain data with synthetic environment (SEDRIS) gives us more accurate damage prediction for industrial disaster and this research will show appropriate prediction results.

  • PDF

APPLICATION OF 3D TERRAIN MODEL FOR INDUSTRY DISASTER ASSESSMENT

  • Kim, Hyung-Seok;Cho, Hyoung-Ki;Chang, Eun-Mi;Kim, In-Hyun;Kim, In-Won
    • Proceedings of the KSRS Conference
    • /
    • 2008.10a
    • /
    • pp.3-5
    • /
    • 2008
  • An increase in oil and gas plants caused by development of process industry have brought into the increase in use of flammable and toxic materials in the complex process under high temperature and pressure. There is always possibility of fire and explosion of dangerous chemicals, which exist as raw materials, intermediates, and finished goods whether used or stored in the industrial plants. Since there is the need of efforts on disaster damage reduction or mitigation process, we have been conducting a research to relate explosion model on the background of real 3D terrain model. By predicting the extent of damage caused by recent disasters, we will be able to improve efficiency of recovery and, sure, to take preventive measure and emergency counterplan in response to unprepared disaster. For disaster damage prediction, it is general to conduct quantitative risk assessment, using engineering model for environmental description of the target area. There are different engineering models, according to type of disaster, to be used for industry disaster such as UVCE (Unconfined Vapour Cloud Explosion), BLEVE (Boiling Liquid Evaporation Vapour Explosion), Fireball and so on, among them, we estimate explosion damage through UVCE model which is used in the event of explosion of high frequency and severe damage. When flammable gas in a tank is released to the air, firing it brings about explosion, then we can assess the effect of explosion. As 3D terrain information data is utilized to predict and estimate the extent of damage for each human and material. 3D terrain data with synthetic environment (SEDRIS) gives us more accurate damage prediction for industrial disaster and this research will show appropriate prediction results.

  • PDF

Development of Prediction of Electric Arc Risk using Object Dection Model (객체 탐지 모델을 활용한 전기 아크 위험성 예측 시스템 개발)

  • Lee, Gyu-bin;Kim, Seung-yeon;An, Donghyeok
    • Smart Media Journal
    • /
    • v.9 no.1
    • /
    • pp.38-44
    • /
    • 2020
  • Due to the high dependence on electric energy, electric fires make up a significant portion of fires in Korea. Electric arcs by short circuits or poor contact cause three of four electrical fires. An electric arc is a discharge phenomenon of electrical current between the insulators, which instantaneously produces high temperature. In order to reduce the fire due to electric arc, this study aims to predict the electric arc risk. We collected arc data from the arc detectors and converted into graphs based on temporal arc data. We used machine learning for training converted graph with different number of temporal arc data. To measure the performance of the learning model, we use the test data. In the results, when the number of temporal arc data was 20, the prediction rate was high as 86%.

Diffusion-weighted Magnetic Resonance Imaging for Predicting Response to Chemoradiation Therapy for Head and Neck Squamous Cell Carcinoma: A Systematic Review

  • Sae Rom Chung;Young Jun Choi;Chong Hyun Suh;Jeong Hyun Lee;Jung Hwan Baek
    • Korean Journal of Radiology
    • /
    • v.20 no.4
    • /
    • pp.649-661
    • /
    • 2019
  • Objective: To systematically review the evaluation of the diagnostic accuracy of pre-treatment apparent diffusion coefficient (ADC) and change in ADC during the intra- or post-treatment period, for the prediction of locoregional failure in patients with head and neck squamous cell carcinoma (HNSCC). Materials and Methods: Ovid-MEDLINE and Embase databases were searched up to September 8, 2018, for studies on the use of diffusion-weighted magnetic resonance imaging for the prediction of locoregional treatment response in patients with HNSCC treated with chemoradiation or radiation therapy. Risk of bias was assessed by using the Quality Assessment Tool for Diagnostic Accuracy Studies-2. Results: Twelve studies were included in the systematic review, and diagnostic accuracy assessment was performed using seven studies. High pre-treatment ADC showed inconsistent results with the tendency for locoregional failure, whereas all studies evaluating changes in ADC showed consistent results of a lower rise in ADC in patients with locoregional failure compared to those with locoregional control. The sensitivities and specificities of pre-treatment ADC and change in ADC for predicting locoregional failure were relatively high (range: 50-100% and 79-96%, 75-100% and 69-95%, respectively). Meta-analytic pooling was not performed due to the apparent heterogeneity in these values. Conclusion: High pre-treatment ADC and low rise in early intra-treatment or post-treatment ADC with chemoradiation, could be indicators of locoregional failure in patients with HNSCC. However, as the studies are few, heterogeneous, and at high risk for bias, the sensitivity and specificity of these parameters for predicting the treatment response are yet to be determined.

Sensitivity Analysis of dVm/dtMax_repol to Ion Channel Conductance for Prediction of Torsades de Pointes Risk (다형 심실빈맥의 예측을 위한 dVm/dtMax_repol의 이온채널 전도도에 대한 민감도 분석)

  • Jeong, Da Un;Yoo, Yedam;Marcellinus, Aroli;Lim, Ki Moo
    • Journal of Biomedical Engineering Research
    • /
    • v.43 no.5
    • /
    • pp.331-340
    • /
    • 2022
  • Early afterdepolarization (EAD), a significant cause of fatal ventricular arrhythmias including Torsade de Pointes (TdP) in long QT syndromes, is a depolarizing afterpotential at the plateau or repolarization phase in action potential (AP) profile early before completing one pace. AP duration prolongation is related to EAD but is not necessarily accounted for EAD. Several computational studies suggested EAD can form from an abnormality in the late plateau and/or repolarization phase of AP shape. In this sense, we hypothesized the slope during repolarization has the characteristics to predict TdP risk, mainly focusing on the maximum slope during repolarization (dVm/dtmax_repol). This study aimed to predict the sensitivity of dVm/dtmax_repol to ion channel conductances as a TdP risk metric through a population simulation considering multiple effects of simultaneous reduction in six ion channel conductances of gNaL, gKr, gKs, gto, gK1, and gCaL. Additionally, we verified the availability of dVm/dtmax_repol for TdP risk prediction through the correlation analysis with qNet, the representative TdP metric. We performed the population simulations based on the methodology of Gemmel et al. using the human ventricular myocyte model of Dutta et al. Among the sixion channel conductances, dVm/dtmax_repol and qNet responded most sensitively to the change in gKr, followed by gNaL. Furthermore, dVm/dtmax_repol showed a statistically significant high negative correlation with qNet. The dVm/dtmax_repol values were significantly different according to three TdP risk levels of high, intermediate, and low by qNet (p<0.001). In conclusion, we suggested dVm/dtmax_repol as a new biomarker metric for TdP risk assessment.

Analysis of Precise Orbit Determination of the KARISMA Using Optical Tracking Data of a Geostationary Satellite (정지궤도위성의 광학 관측데이터를 이용한 KARISMA의 정밀궤도결정 결과 분석)

  • Cho, Dong-Hyun;Kim, Hae-Dong;Lee, Sang-Cherl
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.42 no.8
    • /
    • pp.661-673
    • /
    • 2014
  • In this paper, a precise orbit determination process was carried out based on KARISMA(KARI Collision Risk Management System) developed by KARI(Korea Aerospace Research Institute), in which optical tracking data of a geostationary satellite was used. The real optical tracking data provided by ESA(European Space Agency) for the ARTEMIS geostationary satellite was used. And orbit determination error was approximately 420 m compared to that of the ESA's orbit determination result from the same optical tracking data. In addition, orbit prediction was conducted based on the orbit determination result with optical tracking data for 4 days, and the position error for the orbit prediction during 3 days was approximately 500~600 m compared to that of ESA's result. These results imply that the performance of the KARISMA's orbit determination function is suitable to apply to the collision risk assessment for the space debris.

Expression Profiles of Loneliness-associated Genes for Survival Prediction in Cancer Patients

  • You, Liang-Fu;Yeh, Jia-Rong;Su, Mu-Chun
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.1
    • /
    • pp.185-190
    • /
    • 2014
  • Influence of loneliness on human survival has been established epidemiologically, but genomic research remains undeveloped. We identified 34 loneliness-associated genes which were statistically significant for high-lonely and low-lonely individuals. With the univariate Cox proportional hazards regression model, we obtained corresponding regression coefficients for loneliness-associated genes fo individual cancer patients. Furthermore, risk scores could be generated with the combination of gene expression level multiplied by corresponding regression coefficients of loneliness-associated genes. We verified that high-risk score cancer patients had shorter mean survival time than their low-risk score counterparts. Then we validated the loneliness-associated gene signature in three independent brain cancer cohorts with Kaplan-Meier survival curves (n=77, 85 and 191), significantly separable by log-rank test with hazard ratios (HR) >1 and p-values <0.0001 (HR=2.94, 3.82, and 1.78). Moreover, we validated the loneliness-associated gene signature in bone cancer (HR=5.10, p-value=4.69e-3), lung cancer (HR=2.86, p-value=4.71e-5), ovarian cancer (HR=1.97, p-value=3.11e-5), and leukemia (HR=2.06, p-value=1.79e-4) cohorts. The last lymphoma cohort proved to have an HR=3.50, p-value=1.15e-7. Loneliness-associated genes had good survival prediction for cancer patients, especially bone cancer patients. Our study provided the first indication that expression of loneliness-associated genes are related to survival time of cancer patients.

Design and Implementation of a Flood Disaster Safety System Using Realtime Weather Big Data (실시간 기상 빅데이터를 활용한 홍수 재난안전 시스템 설계 및 구현)

  • Kim, Yeonwoo;Kim, Byounghoon;Ko, Geonsik;Choi, Minwoong;Song, Heesub;Kim, Gihoon;Yoo, Seunghun;Lim, Jongtae;Bok, Kyungsoo;Yoo, Jaesoo
    • The Journal of the Korea Contents Association
    • /
    • v.17 no.1
    • /
    • pp.351-362
    • /
    • 2017
  • Recently, analysis techniques to extract new meanings using big data analysis and various services using them have been developed. A disaster safety service among such services has been paid attention as the most important service. In this paper, we design and implement a flood disaster safety system using real time weather big data. The proposed system retrieves and processes vast amounts of information being collected in real time. In addition, it analyzes risk factors by aggregating the collected real time and past data and then provides users with prediction information. The proposed system also provides users with the risk prediction information by processing real time data such as user messages and news, and by analyzing disaster risk factors such a typhoon and a flood. As a result, users can prepare for potential disaster safety risks through the proposed system.