DOI QR코드

DOI QR Code

Sensitivity Analysis of dVm/dtMax_repol to Ion Channel Conductance for Prediction of Torsades de Pointes Risk

다형 심실빈맥의 예측을 위한 dVm/dtMax_repol의 이온채널 전도도에 대한 민감도 분석

  • Jeong, Da Un (Department of IT Convergence Engineering, Kumoh National Institute of Technology) ;
  • Yoo, Yedam (Department of IT Convergence Engineering, Kumoh National Institute of Technology) ;
  • Marcellinus, Aroli (Department of IT Convergence Engineering, Kumoh National Institute of Technology) ;
  • Lim, Ki Moo (Department of IT Convergence Engineering, Kumoh National Institute of Technology)
  • 정다운 (IT융복합공학과 금오공과대학교) ;
  • 유예담 (IT융복합공학과 금오공과대학교) ;
  • ;
  • 임기무 (IT융복합공학과 금오공과대학교)
  • Received : 2022.08.29
  • Accepted : 2022.10.20
  • Published : 2022.10.31

Abstract

Early afterdepolarization (EAD), a significant cause of fatal ventricular arrhythmias including Torsade de Pointes (TdP) in long QT syndromes, is a depolarizing afterpotential at the plateau or repolarization phase in action potential (AP) profile early before completing one pace. AP duration prolongation is related to EAD but is not necessarily accounted for EAD. Several computational studies suggested EAD can form from an abnormality in the late plateau and/or repolarization phase of AP shape. In this sense, we hypothesized the slope during repolarization has the characteristics to predict TdP risk, mainly focusing on the maximum slope during repolarization (dVm/dtmax_repol). This study aimed to predict the sensitivity of dVm/dtmax_repol to ion channel conductances as a TdP risk metric through a population simulation considering multiple effects of simultaneous reduction in six ion channel conductances of gNaL, gKr, gKs, gto, gK1, and gCaL. Additionally, we verified the availability of dVm/dtmax_repol for TdP risk prediction through the correlation analysis with qNet, the representative TdP metric. We performed the population simulations based on the methodology of Gemmel et al. using the human ventricular myocyte model of Dutta et al. Among the sixion channel conductances, dVm/dtmax_repol and qNet responded most sensitively to the change in gKr, followed by gNaL. Furthermore, dVm/dtmax_repol showed a statistically significant high negative correlation with qNet. The dVm/dtmax_repol values were significantly different according to three TdP risk levels of high, intermediate, and low by qNet (p<0.001). In conclusion, we suggested dVm/dtmax_repol as a new biomarker metric for TdP risk assessment.

Keywords

Acknowledgement

본 연구는 식품의약품안전처(22213MFDS3922)와 한국연구재단 이공학기초연구사업(2022R1A2C2006326), 과학기술정보통신부 및 정보통신기획평가원의 지역지능화혁신인재양성(Grand ICT연구센터) 사업의 연구결과로 수행되었음(IITP-2022-2020-0-01612).

References

  1. Yap, YG, Gamm, AJ, Drug induced QT prolongation and Torsades de Pointes. Heart. 2003;89(11):1363-1372. https://doi.org/10.1136/heart.89.11.1363
  2. Onakpoya, IJ, Heneghan, CJ, Aronson, JK, Post-marketing withdrawal of 462 medicinal products because of adverse drug reactions: A systematic review of the world literature. BMC Med. BMC Medicine. 2016;14(1):1-11. https://doi.org/10.1186/s12916-015-0545-7
  3. ICH Guideline, Guideline S7A Safety pharmacology studies for human pharmaceuticals. Fed. Regist. 2000;(66):36791-36792.
  4. Yao, X, Anderson, DL, Ross, SA, Lang, DG, Desai, BZ, Cooper, DC, Wheelan, P, McIntyre, MS, Bergquist, ML, MacKenzie, KI, Becherer, JD, Hashim, MA, Predicting QT prolongation in humans during early drug development using hERG inhibition and an anaesthetized guinea-pig model. Br. J. Pharmacol. 2008;154(7):1446-1456. https://doi.org/10.1038/bjp.2008.267
  5. Thomas, G, Killeen, MJ, Grace, AA, Huang, CLH, Pharmacological separation of early afterdepolarizations from arrhythmogenic substrate in ΔKPQ Scn5a murine hearts modelling human long QT 3 syndrome. Acta Physiol. 2008;192(4):505-517. https://doi.org/10.1111/j.1748-1716.2007.01770.x
  6. Li, Z, Ridder, BJ, Han, X, Wu, WW, Sheng, J, Tran, PN, Wu, M, Randolph, A, Johnstone, RH, Mirams, GR, Kuryshev, Y, Kramer, J, Wu, C, Crumb, WJ, Strauss, DG, Assessment of an In Silico Mechanistic Model for Proarrhythmia Risk Prediction Under the CiPA Initiative. Clin. Pharmacol. Ther. 2019;105(2):466-475. https://doi.org/10.1002/cpt.1184
  7. Colatsky, T, Fermini, B, Gintant, G, Pierson, JB, Sager, P, Sekino, Y, Strauss, DG, Stockbridge, N, The Comprehensive in Vitro Proarrhythmia Assay (CiPA) initiative - Update on progress. J. Pharmacol. Toxicol. Methods. The Authors. 2016;81:15-20. https://doi.org/10.1016/j.vascn.2016.06.002
  8. Yim, DS, Five years of the cipa project (2013-2018) - what did we learn?. Transl. Clin. Pharmacol. 2018;26(4):145-149. https://doi.org/10.12793/tcp.2018.26.4.145
  9. Cook, D, Brown, D, Alexander, R, March, R, Morgan, P, Satterthwaite, G, Pangalos, MN, Lessons learned from the fate of AstraZeneca's drug pipeline: A five-dimensional framework. Nat. Rev. Drug Discov. Nature Publishing Group. 2014;13(6):419-431. https://doi.org/10.1038/nrd4309
  10. Waring, MJ, Arrowsmith, J, Leach, AR, Leeson, PD, Mandrell, S, Owen, RM, Pairaudeau, G, Pennie, WD, Pickett, SD, Wang, J, Wallace, O, Weir, A, An analysis of the attrition of drug candidates from four major pharmaceutical companies. Nat. Rev. Drug Discov. Nature Publishing Group. 2015;14(7):475-486. https://doi.org/10.1038/nrd4609
  11. Sager, PT, Gintant, G, Turner, JR, Pettit, S, Stockbridge, N, Rechanneling the cardiac proarrhythmia safety paradigm: A meeting report from the Cardiac Safety Research Consortium. Am. Heart J. Mosby, Inc. 2014;167(3):292-300. https://doi.org/10.1016/j.ahj.2013.11.004
  12. Crumb, WJ, Vicente, J, Johannesen, L, Strauss, DG, An evaluation of 30 clinical drugs against the comprehensive in vitro proarrhythmia assay (CiPA) proposed ion channel panel. J. Pharmacol. Toxicol. Methods. Elsevier Inc. 2016;81:251-262. https://doi.org/10.1016/j.vascn.2016.03.009
  13. Fermini, B, Hancox, JC, Abi-Gerges, N, Bridgland-Taylor, M, Chaudhary, KW, Colatsky, T, Correll, K, Crumb, W, Damiano, B, Erdemli, G, Gintant, G, Imredy, J, Koerner, J, Kramer, J, Levesque, P, Li, Z, Lindqvist, A, Obejero-Paz, CA, Rampe, D, Sawada, K, Strauss, DG, Vandenberg, JI, A new perspective in the field of cardiac safety testing through the comprehensive in vitro proarrhythmia assay paradigm. J. Biomol. Screen. 2016;21(1):1-11. https://doi.org/10.1177/1087057115594589
  14. Passini, E, Trovato, C, Morissette, P, Sannajust, F, Bueno-Orovio, A, Rodriguez, B, Drug-induced shortening of the electromechanical window is an effective biomarker for in silico prediction of clinical risk of arrhythmias. Br. J. Pharmacol. 2019;176(19):3819-3833. https://doi.org/10.1111/bph.14786
  15. Okada, JI, Yoshinaga, T, Kurokawa, J, Washio, T, Furukawa, T, Sawada, K, Sugiura, S, Hisada, T, Screening system for drug-induced arrhythmogenic risk combining a patch clamp and heart simulator. Sci. Adv. 2015;1(4):1-8.
  16. O'Hara, T, Virag, L, Varro, A, Rudy, Y, Simulation of the undiseased human cardiac ventricular action potential: Model formulation and experimental validation. PLoS Comput. Biol. 2011;7(5):1-29.
  17. Dutta, S, Chang, KC, Beattie, KA, Sheng, J, Tran, PN, Wu, WW, Wu, M, Strauss, DG, Colatsky, T, Li, Z, Optimization of an in silico cardiac cell model for proarrhythmia risk assessment. Front. Physiol. 2017;8(AUG):1-15.
  18. Parikh, J, Di Achille, P, Kozloski, J, Gurev, V, Global sensitivity analysis of ventricular myocyte model-derived metrics for proarrhythmic risk assessment. Front. Pharmacol. 2019;10(October):1-18. https://doi.org/10.3389/fphar.2019.00001
  19. Llopis-Lorente, J, Gomis-Tena, J, Cano, J, Romero, L, Saiz, J, Trenor, B, In silico classifiers for the assessment of drug proarrhythmicity. J. Chem. Inf. Model. 2020;60(10):5172-5187. https://doi.org/10.1021/acs.jcim.0c00201
  20. Guo, D, Liu, Q, Liu, T, Elliott, G, Gingras, M, Kowey, PR, Yan, GX, Electrophysiological properties of HBI-3000: A new antiarrhythmic agent with multiple-channel blocking properties in human ventricular myocytes. J. Cardiovasc. Pharmacol. 2011;57(1):79-85. https://doi.org/10.1097/FJC.0b013e3181ffe8b3
  21. Tomek, J, Bueno-Orovio, A, Passini, E, Zhou, X, Minchole, A, Britton, O, Bartolucci, C, Severi, S, Shrier, A, Virag, L, Varro, A, Rodriguez, B, Development, calibration, and validation of a novel human ventricular myocyte model in health, disease, and drug block. Elife. 2019;8:1-48.
  22. Weiss, JN, Garfinkel, A, Karagueuzian, HS, Chen, PS, Qu, Z, Early afterdepolarizations and cardiac arrhythmias. Hear. Rhythm. Elsevier Inc. 2010;7(12):1891-1899. https://doi.org/10.1016/j.hrthm.2010.09.017
  23. Gemmell, P, Burrage, K, Rodriguez, B, Quinn, TA, Population of computational rabbit-specific ventricular action potential models for investigating sources of variability in cellular repolarisation. PLoS One. 2014;9(2):15-19.
  24. Peng, W, Clutter-Based Dimension Reordering in Multi-Dimensional Data Visualization., 2005.
  25. Taylor, AL, Hickey, TJ, Prinz, AA, Marder, E, Structure and visualization of high-dimensional conductance spaces. J. Neurophysiol. 2006;96(2):891-905. https://doi.org/10.1152/jn.00367.2006
  26. Peng, W, Ward, MO, Rundensteiner, EA, Clutter reduction in multi-dimensional data visualization using dimension reordering., in Proceedings - IEEE Symposium on Information Visualization, INFO VIS, 2004.
  27. Parikh, J, Gurev, V, Rice, JJ, Novel two-step classifier for Torsades de Pointes risk stratification from direct features. Front. Pharmacol. 2017;8(NOV):1-18.
  28. Yoo, Y, Jeong, DU, Marcellinus, A, Lim, KM, 약물의염전성 부정맥유발예측지표로서심장의전기생리학적특징값들의 검증 Verification of Cardiac Electrophysiological Features as a Predictive Indicator of Drug-Induced Torsades de pointes. J. Biomed. Eng. Res. 2022;43(1):19-26.
  29. Han, X, Samieegohar, M, Ridder, BJ, Wu, WW, Randolph, A, Tran, P, Sheng, J, Stoelzle-Feix, S, Brinkwirth, N, Rotordam, MG, Becker, N, Friis, S, Rapedius, M, Goetze, TA, Strassmaier, T, Okeyo, G, Kramer, J, Kuryshev, Y, Wu, C, Strauss, DG, Li, Z, A general procedure to select calibration drugs for lab-specific validation and calibration of proarrhythmia risk prediction models: An illustrative example using the CiPA model. J. Pharmacol. Toxicol. Methods. Elsevier. 2020;105(February):106890. https://doi.org/10.1016/j.vascn.2020.106890
  30. Jeong, DU, Danadibrata, RZ, Marcellinus, A, Lim, KM, Validation of in silico biomarkers for drug screening through ordinal logistic regression. Front. Physiol. 2022;13(1009647):1-11.
  31. Chang, KC, Dutta, S, Mirams, GR, Beattie, KA, Sheng, J, Tran, PN, Wu, M, Wu, WW, Colatsky, T, Strauss, DG, Li, Z, Uncertainty quantification reveals the importance of data variability and experimental design considerations for in silico proarrhythmia risk assessment. Front. Physiol. 2017;8(NOV):1-17.
  32. Luo, CH, Rudy, Y, A dynamic model of the cardiac ventricular action potential: I. Simulations of ionic currents and concentration changes. Circ. Res. 1994;74(6):1071-1096. https://doi.org/10.1161/01.RES.74.6.1071
  33. J.R., H, A., U, Ionic Basis of the Different Action Potential Configurations of Single Guinea-pig Atrial and Ventricular Myocytes. J. Physiol. 1985;368(1):525-544. https://doi.org/10.1113/jphysiol.1985.sp015874
  34. Akanda, N, Molnar, P, Stancescu, M, Hickman, JJ, Analysis of toxin-induced changes in action potential shape for drug development. J. Biomol. Screen. 2009;14(10):1228-1235. https://doi.org/10.1177/1087057109348378
  35. Qauli, AI, Marcellinus, A, Lim, KM, Sensitivity Analysis of Ion Channel Conductance on Myocardial Electromechanical Delay: Computational Study. Front. Physiol. 2021;12(August):1-18.
  36. Sarkar, AX, Sobie, EA, Quantification of repolarization reserve to understand interpatient variability in the response to proarrhythmic drugs: A computational analysis. Hear. Rhythm. Elsevier Inc. 2011;8(11):1749-1755. https://doi.org/10.1016/j.hrthm.2011.05.023