Abstract
Due to the high dependence on electric energy, electric fires make up a significant portion of fires in Korea. Electric arcs by short circuits or poor contact cause three of four electrical fires. An electric arc is a discharge phenomenon of electrical current between the insulators, which instantaneously produces high temperature. In order to reduce the fire due to electric arc, this study aims to predict the electric arc risk. We collected arc data from the arc detectors and converted into graphs based on temporal arc data. We used machine learning for training converted graph with different number of temporal arc data. To measure the performance of the learning model, we use the test data. In the results, when the number of temporal arc data was 20, the prediction rate was high as 86%.
전기에너지에 대한 높은 의존도 때문에 국내에서 발생하는 화재 중 전기화재가 상당한 비중을 차지한다. 국내에서 발생하는 전기화재 4건 중 3건이 전선의 단락이나 접촉 불량에 의한 전기 아크에 의해 발생했다. 전기 아크란 절연체 사이에서 발생하는 전기적 전류의 방전 현상으로 순간적으로 상당한 열을 내뿜는다. 아크에 의한 전기 화재를 줄이기 위해서 본 연구에서는 전기 아크 위험성 예측을 목표로 한다. 아크 감지기에서 아크 데이터를 수집하고 시간순대로의 아크 데이터를 기반으로 그래프로 변환하였다. 머신 러닝의 데이터 학습에 서로 다른 시계열 데이터의 수로 변환한 그래프들을 사용하였다. 생성된 학습 모델의 성능을 측정하기 위해서 테스트 데이터를 기반으로 평가를 진행하였다. 결과에서 예측 시 사용하는 시계열 아크 데이터의 수가 20개일 때 예측률이 86%로 우수함을 확인하였다.