• 제목/요약/키워드: Prediction risk

검색결과 1,085건 처리시간 0.03초

여성의 개인적 특성과 생활양식요인을 이용한 골량감소 예측모형 (Prediction Model for Reduced Bone mass in Women using Individual Characteristics & Life Style Factors)

  • 이은남;이은옥
    • 근관절건강학회지
    • /
    • 제5권1호
    • /
    • pp.83-109
    • /
    • 1998
  • This study was carried out to identify the Important modifiable risk factors for reduced bone mass and to construct prediction model which can classify women with either low or high bone mass. Through the literature review, individual characteristics such as age, body weight, height, education level, family history, age of menarche, postmenopausal period, gravity, parity, menopausal status, and breast feeding period were identified and factors of life style such as past milk consumption, past physical activity, present daily activity, present calcium intake, alcohol intake, cigarette smoking, coffee consumption were identified as influencing factors of reduced bone mass in women. Four hundred and eighty women aged between 28 and 76 who had given measurement bone mineral density by dual energy x-ray absortiometry in lumbar vertebrae and femur from July to October, 1997 at 4 general hospitals in Seoul and Pusan were selected for this study. Women were excluded if they had a history of any chronic illness such as rheumatoid arthritis, diabetes mellitus, hyperthroidism, & gastrointestinal disorder and any medication such as calcium supplements, calcitonin, estrogen, thyroxine, antacids, & corticosteroids known affect bone. As a result of these exclusion criteria, four hundred and seventeen women were used for analysis. Multiple logistic regression model was developed for estimating the likelihood of the presence or absence of reduced bone mass. A SAS procedure was used to estimate risk factor coefficient. The results are as follows For lumbar spine, the variables significant were age, body weight, menopause status, daily activity, past milk consumption, and past physical activity(p<0.01), while for femoral Ward's triangle, age, body weight, level of education, past milk consumption, past physical activity(p<0.001). Past physical activity, present daily activity and past milk consumption are the most powerful modifiable predictors in vertebrae and femur among the predictors. When the model performance was evaluated by comparing the observed outcome with predicted outcome, the model correctly identified 74.1% of persons with reduced bone mass and 84.5% of persons with normal bone mass in the lumbar vertebrae and 82.9% of persons with reduced bone mass and 75.0% of persons with normal bone mass in the femoral Ward's triangle. On the basis of these results, a number of recommendations for the management of reduced bone mass may be made : First, those woman who are classified as high risk group of the reduced bone mass in the prediction model should examine the bone mineral density to further examine the usefulness of this model. Second, the optimal amount of milk consumption and a regular weight bearing exercise in childhood, adolescence, and early adult should be ensured.

  • PDF

산불위험지수 지역최적화를 통한 2022년 북한산불 사례분석 (Regional Optimization of Forest Fire Danger Index (FFDI) and its Application to 2022 North Korea Wildfires)

  • 윤유정;김서연;최소연;박강현;강종구;김근아;권춘근;서경원;이양원
    • 대한원격탐사학회지
    • /
    • 제38권6_3호
    • /
    • pp.1847-1859
    • /
    • 2022
  • 북한에서 발생한 산불은 비무장지대 등으로 남하하는 경우 우리나라에 직·간접적인 영향을 줄 수 있다. 이에 본 연구는 정보 접근불능 지역인 북한의 산불위험정보를 획득하기 위하여 Local Data Assimilation and Prediction System (LDAPS) 기상자료 기반의 지역 최적화된 산불위험지수 Forest Fire Danger Index (FFDI)를 산출하고, 2022년 4월 북한 고성군과 철원군의 산불 사례에 적용하였다. 그 결과 발화일 당시 FFDI가 각각 위험등급 Extreme과 Severe 구간에 해당하여 적합성을 확인하였다. 또한 산불 발생 전후의 위험도지도와 토양수분지도를 정성적으로 비교한 결과 상호 관계성을 파악하였으며, 향후 토양수분, 표준화강수지수(Standardized Precipitation Index, SPI), 식생수분지수(Normalized Difference Water Index, NDWI) 등을 결합하는 방식으로 산불발생위험지수의 개선이 필요하다.

기계학습 방법을 이용한 기업부도의 예측 (Prediction of bankruptcy data using machine learning techniques)

  • 박동준;윤예분;윤민
    • Journal of the Korean Data and Information Science Society
    • /
    • 제23권3호
    • /
    • pp.569-577
    • /
    • 2012
  • 기업도산에 대한 분석과 관리는 기업의 성과와 성장능력을 평가하는 재무관리 분야에서 중요하게 인식되어 왔다. 결국, 기업도산 예측에 대한 효과적인 모형이 필요하게 된다. 본 논문은 서포트 벡터 기계의 한 종류인 토탈 여유도 알고리즘을 이용하여 기업도산 예측을 위하여 새로운 접근 방법을 서술한다. 몇 개의 실제 자료를 통하여 제안한 방법들이 도산 위험의 평가에서 기존의 방법들보다 개선됨을 확인할 수 있었다.

Deep neural network for prediction of time-history seismic response of bridges

  • An, Hyojoon;Lee, Jong-Han
    • Structural Engineering and Mechanics
    • /
    • 제83권3호
    • /
    • pp.401-413
    • /
    • 2022
  • The collapse of civil infrastructure due to natural disasters results in financial losses and many casualties. In particular, the recent increase in earthquake activities has highlighted on the importance of assessing the seismic performance and predicting the seismic risk of a structure. However, the nonlinear behavior of a structure and the uncertainty in ground motion complicate the accurate seismic response prediction of a structure. Artificial intelligence can overcome these limitations to reasonably predict the nonlinear behavior of structures. In this study, a deep learning-based algorithm was developed to estimate the time-history seismic response of bridge structures. The proposed deep neural network was trained using structural and ground motion parameters. The performance of the seismic response prediction algorithm showed the similar phase and magnitude to those of the time-history analysis in a single-degree-of-freedom system that exhibits nonlinear behavior as a main structural element. Then, the proposed algorithm was expanded to predict the seismic response and fragility prediction of a bridge system. The proposed deep neural network reasonably predicted the nonlinear seismic behavior of piers and bearings for approximately 93% and 87% of the test dataset, respectively. The results of the study also demonstrated that the proposed algorithm can be utilized to assess the seismic fragility of bridge components and system.

퍼지 논리와 Interacting Multiple Model (IMM)을 통한 잡음환경에서의 맞은편 차량의 중앙선 침범 예측 (Prediction of Centerlane Violation for vehicle in opposite direction using Fuzzy Logic and Interacting Multiple Model)

  • 김범성;최배훈;안종현;이희진;김은태
    • 한국지능시스템학회논문지
    • /
    • 제23권5호
    • /
    • pp.444-450
    • /
    • 2013
  • 지능형 차량의 안전 주행을 위해서 주변 차량의 상태를 파악하고, 충돌 위험도를 판단하는 일은 매우 중요하다. 특히 중앙선을 침범하여 주행하는 차량과의 충돌은 치명적일 수 있다. 맞은편에서 다가오는 차량의 중앙선 침범을 지능형 차량의 주요 센서 가운데 하나인 레이더 센서만을 이용하여 예측하면 센서의 특성상 발생하는 노이즈로 인해 오인식의 가능성이 높다. 오인식은 중앙선 침범보다 더 위험한 결과를 초래하기도 한다. 본 논문에서는 레이더 신호에 IMM을 사용한 추적 알고리즘과 퍼지 논리를 적용하여 중앙선 침범 예측의 정확도를 높이고 오인식을 감소시킬 수 있는 알고리즘을 제안한다. 퍼지 로직은 레이더 신호와 IMM알고리즘의 결합을 적절히 조절하는 기능을 한다. 제안된 알고리즘은 컴퓨터 모의 실험을 통해 오인식의 감소가 효과적으로 이루어짐이 검증되었다.

Breast Density and Risk of Breast Cancer in Asian Women: A Meta-analysis of Observational Studies

  • Bae, Jong-Myon;Kim, Eun Hee
    • Journal of Preventive Medicine and Public Health
    • /
    • 제49권6호
    • /
    • pp.367-375
    • /
    • 2016
  • Objectives: The established theory that breast density is an independent predictor of breast cancer risk is based on studies targeting white women in the West. More Asian women than Western women have dense breasts, but the incidence of breast cancer is lower among Asian women. This meta-analysis investigated the association between breast density in mammography and breast cancer risk in Asian women. Methods: PubMed and Scopus were searched, and the final date of publication was set as December 31, 2015. The effect size in each article was calculated using the interval-collapse method. Summary effect sizes (sESs) and 95% confidence intervals (CIs) were calculated by conducting a meta-analysis applying a random effect model. To investigate the dose-response relationship, random effect dose-response meta-regression (RE-DRMR) was conducted. Results: Six analytical epidemiology studies in total were selected, including one cohort study and five case-control studies. A total of 17 datasets were constructed by type of breast density index and menopausal status. In analyzing the subgroups of premenopausal vs. postmenopausal women, the percent density (PD) index was confirmed to be associated with a significantly elevated risk for breast cancer (sES, 2.21; 95% CI, 1.52 to 3.21; $I^2=50.0%$). The RE-DRMR results showed that the risk of breast cancer increased 1.73 times for each 25% increase in PD in postmenopausal women (95% CI, 1.20 to 2.47). Conclusions: In Asian women, breast cancer risk increased with breast density measured using the PD index, regardless of menopausal status. We propose the further development of a breast cancer risk prediction model based on the application of PD in Asian women.

경영자과신이 주가급락위험에 미치는 영향 (The Effect of Managerial Overconfidence on Crash Risk)

  • 유혜영
    • 산경연구논집
    • /
    • 제8권5호
    • /
    • pp.87-93
    • /
    • 2017
  • Purpose - This paper investigates whether managerial overconfidence is associated with firm-specific crash risk. Overconfidence leads managers to overestimate the returns of their investment projects, and misperceive negative net present value projects as value creating. They even use voluntary disclosures to convey their optimistic beliefs about the firms' long-term prospects to the stock market. Thus, the overconfidence bias can lead to managerial bad news hoarding behavior. When bad news accumulates and crosses some tipping point, it will come out all at once, resulting in a stock price crash. Research design, data and methodology - 7,385 firm-years used for the main analysis are from the KIS Value database between 2006 and 2013. This database covers KOSPI-listed and KOSDAQ-listed firms in Korea. The proxy for overconfidence is based on excess investment in assets. A residual from the regression of total asset growth on sales growth run by industry-year is used as an independent variable. If a firm has at least one crash week during a year, it is referred to as a high crash risk firm. The dependant variable is a dummy variable that equals 1 if a firm is a high crash risk firm, and zero otherwise. After explaining the relationship between managerial overconfidence and crash risk, the total sample was divided into two sub-samples; chaebol firms and non-chaebol firms. The relation between how I overconfidence and crash risk varies with business group affiliation was investigated. Results - The results showed that managerial overconfidence is positively related to crash risk. Specifically, the coefficient of OVERC is significantly positive, supporting the prediction. The results are strong and robust in non-chaebol firms. Conclusions - The results show that firms with overconfident managers are likely to experience stock price crashes. This study is related to past literature that examines the impact of managerial overconfidence on the stock market. This study contributes to the literature by examining whether overconfidence can explain a firm's future crashes.

청소년 건강행태에 따른 정신건강 위험 예측: 하이브리드 머신러닝 방법의 적용 (Predicting Mental Health Risk based on Adolescent Health Behavior: Application of a Hybrid Machine Learning Method)

  • 고은경;전효정;박현태;옥수열
    • 한국학교보건학회지
    • /
    • 제36권3호
    • /
    • pp.113-125
    • /
    • 2023
  • Purpose: The purpose of this study is to develop a model for predicting mental health risk among adolescents based on health behavior information by employing a hybrid machine learning method. Methods: The study analyzed data of 51,850 domestic middle and high school students from 2022 Youth Health Behavior Survey conducted by the Korea Disease Control and Prevention Agency. Firstly, mental health risk levels (stress perception, suicidal thoughts, suicide attempts, suicide plans, experiences of sadness and despair, loneliness, and generalized anxiety disorder) were classified using the k-mean unsupervised learning technique. Secondly, demographic factors (family economic status, gender, age), academic performance, physical health (body mass index, moderate-intensity exercise, subjective health perception, oral health perception), daily life habits (sleep time, wake-up time, smartphone use time, difficulty recovering from fatigue), eating habits (consumption of high-caffeine drinks, sweet drinks, late-night snacks), violence victimization, and deviance (drinking, smoking experience) data were input to develop a random forest model predicting mental health risk, using logistic and XGBoosting. The model and its prediction performance were compared. Results: First, the subjects were classified into two mental health groups using k-mean unsupervised learning, with the high mental health risk group constituting 26.45% of the total sample (13,712 adolescents). This mental health risk group included most of the adolescents who had made suicide plans (95.1%) or attempted suicide (96.7%). Second, the predictive performance of the random forest model for classifying mental health risk groups significantly outperformed that of the reference model (AUC=.94). Predictors of high importance were 'difficulty recovering from daytime fatigue' and 'subjective health perception'. Conclusion: Based on an understanding of adolescent health behavior information, it is possible to predict the mental health risk levels of adolescents and make interventions in advance.

의사결정나무 모형을 이용한 주관적 음성장애 예측모형 (The Prediction Model for Self-Reported Voice Problem Using a Decision Tree Model)

  • 변해원
    • 한국산학기술학회논문지
    • /
    • 제14권7호
    • /
    • pp.3368-3373
    • /
    • 2013
  • 본 연구에서는 주관적 음성문제의 위험요인으로 구명된 주요 변수를 기반으로 주관적 음성장애를 예측할 수 있는 모형을 개발 하였다. 연구자료는 2008년도 국민건강영양조사이며, 이비인후검진을 완료한 전국의 19세 이상 지역사회 성인 3,600명(남 1,501명, 여 2,099명)을 분석대상으로 하였다. 분석방법은 주관적 음성장애 여부를 결과변수로 성, 연령, 흡연, 음주, 교육수준, 직업, 갑상선장애, 최근 2주간 급성 및 만성질환으로 인한 통증 및 불편감을 설명변수로 사용하였고, 예측모형은 의사결정나무 모형(Decision Tree)의 exhaustive CHAID(Chi Squared Automatic Interaction Detection) 알고리즘을 이용하였다. 주관적 음성 장애와 관련된 통계학적 분류 모형을 구축한 결과, 유의미한 예측 변수는 연령, 교육수준, 최장 직업, 갑상선 장애, 최근 2주 동안의 신체 불편 및 통증경험 여부였다. 이 연구의 모형을 기초로 음성장애 예방을 위해서 음성장애 고위험군에 대한 조기 관리의 필요성이 제기된다.

Safety of Workers in Indian Mines: Study, Analysis, and Prediction

  • Verma, Shikha;Chaudhari, Sharad
    • Safety and Health at Work
    • /
    • 제8권3호
    • /
    • pp.267-275
    • /
    • 2017
  • Background: The mining industry is known worldwide for its highly risky and hazardous working environment. Technological advancement in ore extraction techniques for proliferation of production levels has caused further concern for safety in this industry. Research so far in the area of safety has revealed that the majority of incidents in hazardous industry take place because of human error, the control of which would enhance safety levels in working sites to a considerable extent. Methods: The present work focuses upon the analysis of human factors such as unsafe acts, preconditions for unsafe acts, unsafe leadership, and organizational influences. A modified human factor analysis and classification system (HFACS) was adopted and an accident predictive fuzzy reasoning approach (FRA)-based system was developed to predict the likelihood of accidents for manganese mines in India, using analysis of factors such as age, experience of worker, shift of work, etc. Results: The outcome of the analysis indicated that skill-based errors are most critical and require immediate attention for mitigation. The FRA-based accident prediction system developed gives an outcome as an indicative risk score associated with the identified accident-prone situation, based upon which a suitable plan for mitigation can be developed. Conclusion: Unsafe acts of the worker are the most critical human factors identified to be controlled on priority basis. A significant association of factors (namely age, experience of the worker, and shift of work) with unsafe acts performed by the operator is identified based upon which the FRA-based accident prediction model is proposed.