References
- 김철응, 윤민 (2003). 서포트 벡터 기계에서 잡음 영향의 효과적 조절. <응용통계연구>, 16, 261-271. https://doi.org/10.5351/KJAS.2003.16.2.261
- 박혜정 (2011). 온라인 서포트벡터기계를 이용한 온라인 비정상 사건탐지. <한국데이터정보과학회지>, 22, 207-215.
- 석경하 (2010). 최소제곱 서포트벡터기계 형태의 준지도 분류. <한국데이터정보과학회지>, 21, 461-470.
- 임주열, 백장선, 김민수 (2010). 서포트벡터머신과 정칙화판별함수를 이용한 비디오 문자인식의 분류성능개선. <한국데이터정보과학회지>, 21, 689-697.
- 황창하, 신사임 (2010). 커널기계 기법을 이용한 일반화 이분산자기회귀모형 추정. <한국데이터정보과학회지>, 21, 419-425.
- Bartlett, P. and Shawe-Talyor, J. (1999). Generalization performance of support vector machines on other pattern classifiers. In Advances in Kernel Methods-Support Vector learning, edited by Scholkopf, B., Burges, C. J. C., and Smola, A., The MIT Press, London, 43-54.
- Benenett, K. P. and Mangasarian, O. L. (1992). Robust linear programming discrimination of two linearly inseparable sets. Optimization Methods and Software, 1, 23-24. https://doi.org/10.1080/10556789208805504
- Cherkassky, V. and Mulier, F. (1998). Learning from data concepts, theory, and methods, John Wiley & Sons, New York.
- Cristianini, N. and Shawe-Taylor, J. (2000). An introduction to support vector machines and other kernelbased learning methods, Cambridge University Press, Cambridge.
- Cortes, C. and Vapnik, V. (1995). Support vector networks. Machine Learning, 20, 273-297.
- Eisenbis, R. A. (1978). Problem in applying discriminant analysis in credit scoring models. Journal of Banking and Finance, 2, 205-219. https://doi.org/10.1016/0378-4266(78)90012-2
- Glover, F. (1990). Improved linear programming models for discriminant analysis. Decision Sciences, 21, 771-785. https://doi.org/10.1111/j.1540-5915.1990.tb01249.x
- Haykin, S. (1998). Neural networks a comprehensive foundation, 2nd ed., Prentice Hall, New Jersey.
- Mangasarian, O. L. (1968). Multi surface method of pattern separation. IEEE Transaction on Information Theory, 14, 801-807. https://doi.org/10.1109/TIT.1968.1054229
- Nakayama, H., Yun, Y. B. and Yoon, M. (2009) Sequential approximate multiobjective optimization using computational intelligence, Springer, Heidelberg.
- Scholkopf, B. and Smola, A. J. (2002). Learning with kernels: Support vector machines, regularization, optimization, and beyond, The MIT Press, London.
- Shawe-Taylor, J., Bartlett, P. L., Williamson, R. C. and Anthont, M. (1998). Structural risk minimization over data-dependent hierarchies. IEEE Transaction on Information Theory, 44, 1926-1940. https://doi.org/10.1109/18.705570
- Smola, A. J. and Scholkopf, B. (1998). A tutorial on support vector regression, NeuroCOLT2 Technical Report, NeuroCOLT, London.
- Yoon, M., Yun, Y. B. and Nakayama, H. (2004). Total margin algorithms in support vector machines. IEICE Transactions on Information and Systems, 87, 1223-1230.
- Vapnik, V. N. (1998). Statistical learning theory, John Wiley & Sons, New York.
Cited by
- Generating of Pareto frontiers using machine learning vol.24, pp.3, 2013, https://doi.org/10.7465/jkdi.2013.24.3.495
- Support vector machines for big data analysis vol.24, pp.5, 2013, https://doi.org/10.7465/jkdi.2013.24.5.989
- Bankruptcy prediction using ensemble SVM model vol.24, pp.6, 2013, https://doi.org/10.7465/jkdi.2013.24.6.1113
- RNN(Recurrent Neural Network)을 이용한 기업부도예측모형에서 회계정보의 동적 변화 연구 vol.23, pp.3, 2012, https://doi.org/10.13088/jiis.2017.23.3.139