Browse > Article
http://dx.doi.org/10.7465/jkdi.2012.23.3.569

Prediction of bankruptcy data using machine learning techniques  

Park, Dong-Joon (Department of Statistics, Pukyong National University)
Yun, Ye-Boon (Faculty of Environmental and Urban Engineering, Kansai University)
Yoon, Min (Department of Statistics, Pukyong National University)
Publication Information
Journal of the Korean Data and Information Science Society / v.23, no.3, 2012 , pp. 569-577 More about this Journal
Abstract
The analysis and management of business failure has been recognized to be important in the area of financial management in the evaluation of firms' performance and the assessment of their viability. To this end, effective failure-prediction models are needed. This paper describes a new approach to prediction of business failure using the total margin algorithm which is a kind of support vector machine. It will be shown that the proposed method can evaluate the risk of failure better than existing methods through some real data.
Keywords
Prediction of failure company; soft margin algorithm; support vector machines; total margin algorithm;
Citations & Related Records
Times Cited By KSCI : 5  (Citation Analysis)
연도 인용수 순위
1 Shawe-Taylor, J., Bartlett, P. L., Williamson, R. C. and Anthont, M. (1998). Structural risk minimization over data-dependent hierarchies. IEEE Transaction on Information Theory, 44, 1926-1940.   DOI   ScienceOn
2 Smola, A. J. and Scholkopf, B. (1998). A tutorial on support vector regression, NeuroCOLT2 Technical Report, NeuroCOLT, London.
3 Yoon, M., Yun, Y. B. and Nakayama, H. (2004). Total margin algorithms in support vector machines. IEICE Transactions on Information and Systems, 87, 1223-1230.
4 Vapnik, V. N. (1998). Statistical learning theory, John Wiley & Sons, New York.
5 석경하 (2010). 최소제곱 서포트벡터기계 형태의 준지도 분류. <한국데이터정보과학회지>, 21, 461-470.
6 임주열, 백장선, 김민수 (2010). 서포트벡터머신과 정칙화판별함수를 이용한 비디오 문자인식의 분류성능개선. <한국데이터정보과학회지>, 21, 689-697.
7 Cherkassky, V. and Mulier, F. (1998). Learning from data concepts, theory, and methods, John Wiley & Sons, New York.
8 황창하, 신사임 (2010). 커널기계 기법을 이용한 일반화 이분산자기회귀모형 추정. <한국데이터정보과학회지>, 21, 419-425.   과학기술학회마을
9 Bartlett, P. and Shawe-Talyor, J. (1999). Generalization performance of support vector machines on other pattern classifiers. In Advances in Kernel Methods-Support Vector learning, edited by Scholkopf, B., Burges, C. J. C., and Smola, A., The MIT Press, London, 43-54.
10 Benenett, K. P. and Mangasarian, O. L. (1992). Robust linear programming discrimination of two linearly inseparable sets. Optimization Methods and Software, 1, 23-24.   DOI   ScienceOn
11 Cristianini, N. and Shawe-Taylor, J. (2000). An introduction to support vector machines and other kernelbased learning methods, Cambridge University Press, Cambridge.
12 Cortes, C. and Vapnik, V. (1995). Support vector networks. Machine Learning, 20, 273-297.
13 Eisenbis, R. A. (1978). Problem in applying discriminant analysis in credit scoring models. Journal of Banking and Finance, 2, 205-219.   DOI   ScienceOn
14 Glover, F. (1990). Improved linear programming models for discriminant analysis. Decision Sciences, 21, 771-785.   DOI
15 Haykin, S. (1998). Neural networks a comprehensive foundation, 2nd ed., Prentice Hall, New Jersey.
16 Mangasarian, O. L. (1968). Multi surface method of pattern separation. IEEE Transaction on Information Theory, 14, 801-807.   DOI
17 Nakayama, H., Yun, Y. B. and Yoon, M. (2009) Sequential approximate multiobjective optimization using computational intelligence, Springer, Heidelberg.
18 박혜정 (2011). 온라인 서포트벡터기계를 이용한 온라인 비정상 사건탐지. <한국데이터정보과학회지>, 22, 207-215.
19 Scholkopf, B. and Smola, A. J. (2002). Learning with kernels: Support vector machines, regularization, optimization, and beyond, The MIT Press, London.
20 김철응, 윤민 (2003). 서포트 벡터 기계에서 잡음 영향의 효과적 조절. <응용통계연구>, 16, 261-271.   과학기술학회마을   DOI