• 제목/요약/키워드: Prediction performance

검색결과 5,600건 처리시간 0.028초

Adaptive MPEG Traffic Prediction

  • Jung, Souhwan;Yoo, Jisang
    • The Journal of the Acoustical Society of Korea
    • /
    • 제16권3E호
    • /
    • pp.7-13
    • /
    • 1997
  • This paper addresses traffic prediction issues on MPEG. A new adaptive traffic prediction scheme is proposed using MPEG picture characteristic that picture traffic depends on the coding mode of that picture, that is, I, P, and B mode. Our prediction scheme, which is based n picture decomposition (PD) and the cross-correlation of the different types of pictures, has better performance in predicting bursty MPEG traffic than that of the first-order autoregressive (AR) prediction scheme. Our simulation results show that the performance is further improved about 15% by utilizing the cross-correlations between pictures.

  • PDF

포장상태 예측방법 개선에 관한 연구 (Development of Prediction Method for Highway Pavement Condition)

  • 박상욱;서영찬;정철기
    • 한국도로학회논문집
    • /
    • 제10권3호
    • /
    • pp.199-208
    • /
    • 2008
  • 포장상태 예측은 의사결정과정에서 포장의 공용성능을 평가하고 사업대상구간의 우선순위를 선정하기 위한 적정한 정보를 제공해준다. 근래들어 현재의 포장상태가 장래에 어느 정도 저하되는지를 예측하려는 많은 접근이 있었으나 포장의 서비스수명을 적정히 예측하는 데에는 한계를 보여왔다. 본 논문에서는 포장상태 예측방법을 개선하기 위하여 포장상태 공용성모형과 포장상태 예측모형을 개발하였다. 공용성 모형은 실제 포장상태 분석결과를 회귀분석하여 포장의 종류별, 교통량별로 백분위 50%, 25%, 15%, 5%의 확률분포 모형을 도출한 것이다. 예측모형은 앞서 도출된 공용성모형 모형식을 기준으로 하여 대상구간 각각의 포장상태 측정값에 의해 포장상태 확률을 결정한다. 개발된 예측모형의 검증을 위하여 비교대상구간을 선정하였고, HPCI의 평균값 표준편차, 3.0이하 비율을 비교분석하였다. 이를 통하여 기존예측모형이 안고 있는 교통량, 재령, 현재 포장 상태를 고려하여 보다 현실에 부합되는 포장상태를 예측하는 방법을 제공하고자 한다.

  • PDF

340MWe급 순환 유동상 보일러의 단순 성능 예측 모형 (Performance Prediction Model of 340MWe Circulating Fluidized Bed Boiler)

  • 양종인;최상민
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2012년도 제45회 KOSCO SYMPOSIUM 초록집
    • /
    • pp.119-122
    • /
    • 2012
  • Circulating fluided bed(CFB) furnace which can use a variety of low-grade fuels because of high heat capacity and good mixing characteristic in its furnace have turned out to be effective system. There is no many research to predict performance considering total boiler system with water-steam side. Most of performance prediction model have focused on hydrodynamics or chemical mechanism in furnace. so, This study is aimed to develop performance prediction model which consider water-steam side.

  • PDF

CRF를 이용한 운율경계추성 성능개선 (Improvements on Phrase Breaks Prediction Using CRF (Conditional Random Fields))

  • 김승원;이근배;김병창
    • 대한음성학회지:말소리
    • /
    • 제57호
    • /
    • pp.139-152
    • /
    • 2006
  • In this paper, we present a phrase break prediction method using CRF(Conditional Random Fields), which has good performance at classification problems. The phrase break prediction problem was mapped into a classification problem in our research. We trained the CRF using the various linguistic features which was extracted from POS(Part Of Speech) tag, lexicon, length of word, and location of word in the sentences. Combined linguistic features were used in the experiments, and we could collect some linguistic features which generate good performance in the phrase break prediction. From the results of experiments, we can see that the proposed method shows improved performance on previous methods. Additionally, because the linguistic features are independent of each other in our research, the proposed method has higher flexibility than other methods.

  • PDF

Performance Evaluation of a Feature-Importance-based Feature Selection Method for Time Series Prediction

  • Hyun, Ahn
    • Journal of information and communication convergence engineering
    • /
    • 제21권1호
    • /
    • pp.82-89
    • /
    • 2023
  • Various machine-learning models may yield high predictive power for massive time series for time series prediction. However, these models are prone to instability in terms of computational cost because of the high dimensionality of the feature space and nonoptimized hyperparameter settings. Considering the potential risk that model training with a high-dimensional feature set can be time-consuming, we evaluate a feature-importance-based feature selection method to derive a tradeoff between predictive power and computational cost for time series prediction. We used two machine learning techniques for performance evaluation to generate prediction models from a retail sales dataset. First, we ranked the features using impurity- and Local Interpretable Model-agnostic Explanations (LIME) -based feature importance measures in the prediction models. Then, the recursive feature elimination method was applied to eliminate unimportant features sequentially. Consequently, we obtained a subset of features that could lead to reduced model training time while preserving acceptable model performance.

Markov Chain을 응용한 학습 성과 예측 방법 개선 (Improving learning outcome prediction method by applying Markov Chain)

  • 황철현
    • 문화기술의 융합
    • /
    • 제10권4호
    • /
    • pp.595-600
    • /
    • 2024
  • 학습 성과를 예측하거나 학습 경로를 최적화하는 연구 분야에서 기계학습과 같은 인공지능 기술의 사용이 점차 증가하면서 교육 분야의 인공지능 활용은 점차 많은 진전을 보이고 있다. 이러한 연구는 점차 심층학습과 강화학습과 같은 좀 더 고도화된 인공지능 방법으로 진화하고 있다. 본 연구는 학습자의 과거 학습 성과-이력 데이터를 기반으로 미래의 학습 성과를 예측하는 방법을 개선하는 것이다. 따라서 예측 성능을 높이기 위해 Markov Chain 방법을 응용한 조건부 확률을 제안한다. 이 방법은 기계학습에 의한 분류 예측에 추가하여 학습자가 학습 이력 데이터를 분류 예측에 추가함으로써 분류기의 예측 성능을 향상 시키기 위해 사용된다. 제안 방법의 효과를 확인하기 위해서 실증 데이터인 '교구 기반의 유아 교육 학습 성과 데이터'를 활용하여 기존의 분류 알고리즘과 제안 방법에 의한 분류 성능 지표를 비교하는 실험을 수행하였다. 실험 결과, 분류 알고리즘만 단독 사용한 사례보다 제안 방법에 의한 사례에서 더 높은 성능 지표를 산출한다는 것을 확인할 수 있었다.

Assessment of the effect of biofilm on the ship hydrodynamic performance by performance prediction method

  • Farkas, Andrea;Degiuli, Nastia;Martic, Ivana
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제13권1호
    • /
    • pp.102-114
    • /
    • 2021
  • Biofouling represents an important problem in the shipping industry since it causes the increase in surface roughness. The most of ships in the current world fleet do not have good coating condition which represents an important problem due to strict rules regarding ship energy efficiency. Therefore, the importance of the control and management of the hull and propeller fouling is highlighted by the International Maritime Organization and the maintenance schedule optimization became valuable energy saving measure. For adequate implementation of this measure, the accurate prediction of the effects of biofouling on the hydrodynamic characteristics is required. Although computational fluid dynamics approach, based on the modified wall function approach, has imposed itself as one of the most promising tools for this prediction, it requires significant computational time. However, during the maintenance schedule optimization, it is important to rapidly predict the effect of biofouling on the ship hydrodynamic performance. In this paper, the effect of biofilm on the ship hydrodynamic performance is studied using the proposed performance prediction method for three merchant ships. The applicability of this method in the assessment of the effect of biofilm on the ship hydrodynamic performance is demonstrated by comparison of the obtained results using the proposed performance prediction method and computational fluid dynamics approach. The comparison has shown that the highest relative deviation is lower than 4.2% for all propulsion characteristics, lower than 1.5% for propeller rotation rate and lower than 5.2% for delivered power. Thus, a practical tool for the estimation of the effect of biofouling with lower fouling severity on the ship hydrodynamic performance is developed.

Network traffic prediction model based on linear and nonlinear model combination

  • Lian Lian
    • ETRI Journal
    • /
    • 제46권3호
    • /
    • pp.461-472
    • /
    • 2024
  • We propose a network traffic prediction model based on linear and nonlinear model combination. Network traffic is modeled by an autoregressive moving average model, and the error between the measured and predicted network traffic values is obtained. Then, an echo state network is used to fit the prediction error with nonlinear components. In addition, an improved slime mold algorithm is proposed for reservoir parameter optimization of the echo state network, further improving the regression performance. The predictions of the linear (autoregressive moving average) and nonlinear (echo state network) models are added to obtain the final prediction. Compared with other prediction models, test results on two network traffic datasets from mobile and fixed networks show that the proposed prediction model has a smaller error and difference measures. In addition, the coefficient of determination and index of agreement is close to 1, indicating a better data fitting performance. Although the proposed prediction model has a slight increase in time complexity for training and prediction compared with some models, it shows practical applicability.

인공신경망을 이용한 벌크 비정질 합금 소재의 포화자속밀도 예측 성능평가 (Artificial Neural Network Supported Prediction of Magnetic Properties of Bulk Metallic Glasses)

  • 남충희
    • 한국재료학회지
    • /
    • 제33권7호
    • /
    • pp.273-278
    • /
    • 2023
  • In this study, based on the saturation magnetic flux density experimental values (Bs) of 622 Fe-based bulk metallic glasses (BMGs), regression models were applied to predict Bs using artificial neural networks (ANN), and prediction performance was evaluated. Model performance evaluation was investigated by using the F1 score together with the coefficient of determination (R2 score), which is mainly used in regression models. The coefficient of determination can be used as a performance indicator, since it shows the predicted results of the saturation magnetic flux density of full material datasets in a balanced way. However, the BMG alloy contains iron and requires a high saturation magnetic flux density to have excellent applicability as a soft magnetic material, and in this study F1 score was used as a performance indicator to better predict Bs above the threshold value of Bs (1.4 T). After obtaining two ANN models optimized for the R2 and F1 score conditions, respectively, their prediction performance was compared for the test data. As a case study to evaluate the prediction performance, new Fe-based BMG datasets that were not included in the training and test datasets were predicted using the two ANN models. The results showed that the model with an excellent F1 score achieved a more accurate prediction for a material with a high saturation magnetic flux density.

Review of Statistical Methods for Evaluating the Performance of Survival or Other Time-to-Event Prediction Models (from Conventional to Deep Learning Approaches)

  • Seo Young Park;Ji Eun Park;Hyungjin Kim;Seong Ho Park
    • Korean Journal of Radiology
    • /
    • 제22권10호
    • /
    • pp.1697-1707
    • /
    • 2021
  • The recent introduction of various high-dimensional modeling methods, such as radiomics and deep learning, has created a much greater diversity in modeling approaches for survival prediction (or, more generally, time-to-event prediction). The newness of the recent modeling approaches and unfamiliarity with the model outputs may confuse some researchers and practitioners about the evaluation of the performance of such models. Methodological literacy to critically appraise the performance evaluation of the models and, ideally, the ability to conduct such an evaluation would be needed for those who want to develop models or apply them in practice. This article intends to provide intuitive, conceptual, and practical explanations of the statistical methods for evaluating the performance of survival prediction models with minimal usage of mathematical descriptions. It covers from conventional to deep learning methods, and emphasis has been placed on recent modeling approaches. This review article includes straightforward explanations of C indices (Harrell's C index, etc.), time-dependent receiver operating characteristic curve analysis, calibration plot, other methods for evaluating the calibration performance, and Brier score.