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Abstract

This paper addresses traffic prediction issues on MPEG. A new adaptive traffic prediction scheme is proposed using MPEG 
picture characteristic 나ia【picture traffic depends on the coding mode of that picture, that is, I, P, and B mode. Our 
prediction scheme, which is based on pict나re decomposition (PD) and the cross-correlation of the different types of pictures, 
has better performance in predicting bursty MPEG traffic than that of the first-order autoregressive (AR) prediction scheme. 
Our simulation results show that the performance is further improved about 15% by utilizing the cross-correlations between 
pictures.

I. Introduction

The Asynchronous Transfer Mode (ATM) has emerged 
as the international standard! 1, 2] for multiplexing and 
switching techniques in Broadband Integrated Services 
Digital Networks (B-ISDN). It provides for the integrated 
support of several types and classes of services that have 
a very wide range of traffic characteristics and service re­
quirements. For example, an electronic mail service does 
not have critical delay requirements, but is sensitive to 
data loss. On the other hand, voice needs to be transported 
in real-time, but can tolerate some loss without adversely 
affecting voice quality. However, this is not the case in 
video communications since they are highly sensitive to 
the loss of bits.

Since the International Standard Organization (ISO) 
provided a standard for multimedia applications, called 
나le Moving Picture Experts Group (MPEG) [3], there has 
been a great deal of effort devoted to characterizing MPEG 
video. MPEG video uses a two-layer coding scheme, in 
which a different coding flow is applied on a picture-by- 
picture basis to obtain higher compression ratios. As a re­
sult, MPEG traffic is so bursty that it is difficult to man­
age it on networks. Accurate traffic prediction en­
ables us to forecast network congestion so that we can 
prevent it by allocating more bandwidth in advance.

A simple prediction model using the mean and standard 
deviation was proposed for bandwidth estimation in [4]. 
In that model, the standard deviation of video traffic is us­
ually too large to be used for predicting the traffic of the 

next picture. An autoregressive (AR) model with a Gaus­
sian process was presented in [5] to model an encoded 
video source. This model is suitable for less bursty traffic 
such as data traffic, but not for very bursty traffic such as 
an MPEG video. Yegenoglu et. al [6] proposed a motion- 
classified AR model that uses a different AR parameter 
set as a function of their motion changes. This model 
uses three transition states, viz., high-motion, medium­
motion, and low-motion. The problem is that of determin­
ing the duration of each state. All of these approaches 
can be used for an encoded VBR video, but they do not 
take full advantage of the characteristics of MPEG video 
which uses a picture-dependent coding scheme.

In this paper, we investigate how to predict VBR video 
effectively in ATM networks. In our prediction scheme, 
we use the characteristics of MPEG video that generate 
variable bit rate streams according to the picture types. 
Our picture-decomposed prediction scheme outperforms 
the typical autoregressive scheme with the same order 
prediction due to the increase of the autocorrelation pro­
perty. By utilizing cross-correlations between different 
types of pictures, performance is enhanced further by 
about 15%. The result is from that the cross-correlation 
property contributes to the performance additionally. In 
autoregressive scheme, only the autocorrelation properly 
of the signal is used for the prediction. Our method that 
uses both the autocorrelation and cross-correlation pro­
perties of the decomposed signals can be effective for 
predicting signals that can be readily decomposed into 
s 나 bsignals.

The remainder of the paper is organized as follows. In 
Section 2, the coding scheme for MPEG video and its 
statistic시 characteristics are briefly discussed. In Section 3, 
our trafile prediction schemes which are based on picture
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decomposition are presented, and their performance is 
compared with that of AR prediction. Finally, our con­
cluding remarks are presented in Section 4.

II. Mpeg Video and Statistics

The moving picture experts group (MPEG) is a work­
ing group of the International Standard Organization 

(ISO) to develop a standard for video and associated 
audio on telecommunication channels as well as local area 
networks. The MPEG activities cover video and the as­
sociated audio compression and the issue of audio-visual 
synchronization. There are three phases in MPEG stand­
ardization. The MPEG first-phase (MPEG-1) video com­
pression standard, aimed primarily at coding video for 
digital storage media with rates of 1 to 1.5 Mbps is well 
suited for a wide range of applications at a variety of bit 
rates[7]. The second phase of MPEG (MPEG-2) is aimed at 
coding video signals created by CCIR 601, e.g., 720 pixels, 
480 lines, 30 frames per second, 2 to 1 interlace at bit 
rates of 2 Mbps or higher[이. The third phase of MPEG 
(MPEG-4) addresses the coding of video signals at very 
low-bit rates[9, 10]. The scope of MPEG-4 is to code gen­
eric audio-visual signals at bit rates from 10 to 64 kbps. 
We will briefly describe the coding algorithm of MPEG 
video to understand the characteristics of MPEG traffic.

MPEG video coders use different coding schemes for 
each type of picture, and can achieve a compression ratio 
of up to 200. As a result, 나le generated traffic is highly flu­
ctuating over time, that is, bursty. The burstiness measure 
most widely used is the peak-to-averagc ratio (PAR)|5|. 
The peak rate of MPEG video is up to five times higher 
than the average rate due to the coding schemes and pic­
ture types. The statistics of MPEG traffic of various 
video scenes are presented in Table 1. Due to large 
fluctuations, the standard deviation is usually comparable 
to the mean of the traffic.

Samples of real MPEG video traffic at the frame lev이 

are shown in Figure 2. Inspecting traffic at the frame

Figure 1. MPEG group of pictures (GOP).
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Figure 2. Samples of MPEG traffic at the frame level.

Fig니re 3. Distributions of MPEG traffic at the frame level.

Table 1. Statistics of MPEG trafilc at 나)e frame level.

scenes
mean 

(cell/frame)
standard 
deviation

peak 
(cell/frame)

peak-to- 
average ratio

star trek 111 99 474 4.27

football 202 180 1004 4.97

bike 90 86 304 3.38

table tennis 173 182 582 3.36

us 60 52 263 4.3卩

level, it is observed that the rate of an I frame or a P 
frame is much higher than that of a B frame, regardless 
of GOP formal. This results from 나此 fact that the bidirect­
ional prediction and large quantization steps are used for 
B frames. It is 시so observed that the bit rate of an I 
frame is, in general, higher than that of a P frame, but 
that is not the case of a scene change since the P frame is 
coded the same as an I frame when the energy of the pre-
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diction error is higher than that of the original frame.
The distributions of two MPEG traffic source at the 

frame level are presented in Figure 3. The scenes are 
CNN News and the movie Princess Bride. Both scenes are 
about 90 minutes long, and it is difficult to discern from 
the figure exactly what the distributions resemble. The den­
sity in low bit rates is high for both scenes. This result is 

natur지 since MPEG videos are coded based on the GOP. 
Note that a GOP has more B pictures than I or P pict­
ures in this case, and a B picture generates lower bits 
than an I or P picture. It can also be noted that the distri­
butions do not resemble the Gaussian function. A study 
shows that the VBR video traffic resembled a Gamma 
function[llj. But, from our observations, the distributions 
of MPEG video basically depend on scene and motion 
changes of the sequence. More extensive studies on math­
ematical modeling of distributions are required. We will 
investigate the statistics of MPEG traffic at the slice level 
to look at more details of traffic variations.

A number of analysis studies on traffic at the frame 
level and cell level have been performed so fad 13-15]. The 
analysis at the frame level has focused on source modeling, 
and the analysis at the cell level has focused on a queueing 
model of the average delay. We will look al the statistics 
of traffic at the slice level. A slice is assumed as a single 
horizontal set of macroblocks. When the video data are 
packetized into a ATM cell, the packetizer has to wait for 
a while until it collects a quantity of data to packetize. 
After collecting data, the packetizer encapsules the data 
into a number of cells, and sends them to networks. The 
period for the data collection can be a frame, slice, or 
even macroblock. The interval of a frame, 1/3() sec in 
general, is not a small delay for packetization since the 
queueing and propagation delays will be added to this. 
Data bits less than a c이 1 are generated from a macro­
block with 나te picture of size 352X240. It is a desirable 
assumption, therefore, that the generated data are col­
lected during a slice interval and then packetized.

In general, the statistical characteristics of MPEG 
videos 아low that MPEG trafTic is quite bursty at the 
frame level, and have a distribution that is not a specific 
function. From the perspective of network side, bursty 
traffic is difficult to manage since they are apt to cause 
congestions and buffer overflows. To predict and prevent 
congestions and buffer overflows due to the burstiness, 
traffic modeling and resource allocation for VBR video 
source are important issues that have to be addressed for 
the spread of video communications over ATM networks.

HI. Traffic Prediction

3.1 Autoregressive (AR) Prediction

Many prediction schemes have been developed for time 
series analysis. The autoregressive (AR) and autoregres­
sive moving average (ARMA) predictions are among the 
major prediction methods that are widely used. A number 
of studies show that they can model VBR video sources 
[4, 6]. The different usages of AR and ARMA depend on 
the shape of the autocorrelation function. It is known 
that AR is effective for a signal with a linearly decreasing 
autocorrelation function. On the other hand, ARMA is 

the choice for a signal with an exponentially decreasing 
autocorrelation function[16]. In this section, we will re­
view some of the theoretical background for AR pred­
iction scheme, and then investigate its performance for 
MPEG video streams.

Suppose that Xn is a random sequence of the bit rate 
at the n-th frame. The m-th order AR prediction is given by

m
=工 dk^n-k +务》 (1)

*=1

where the is the prediction coefficient and is the predic­
tion error. The prediction coefficients are obtained by the 
Yule-Walker cquation[17] as shown in Appendix,

r0 r\ •-1 r\

rQ • = r2
(2)

.ym- 1 ^m-2 ♦ .rQ

The performance of the AR prediction scheme was in­
vestigated by varying the prediction order m. The test data 
is the bike scene with a GOP size of 6 (IBBPBB). The 
mean prediction error vs. the order of the AR prediction 
is shown in Figure 4. At a low order of m = l or 2, the per­
formance of the AR prediction scheme is very poor since 
the correlation of two consecutive frames (I and B, or P 
and B) is very low. The prediction error, however, drops 
quite a bit at m = 3 and 6. This is due to the fact that the 
previous P or I pictures were included when predicting a 
new P or I picture. For example, at m = 3, two B pictures 
and an I (or P) picture were used to predict a new P (or 
I) picture. At m = 6, a previous I picture, a P picture, and 
four B pictures were used to predict an I or P picture. 
After m = 6, the performance converges to a certain 
value. We conclude that the prediction order m should be 
응realer than or at least equal to the GOP size of traffic to 
obtain good prediction results.
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Figure 4. Performance of AR prediction.

3.2 Picture-Decomposed (PD) Prediction

Since MPEG video is bursty and changes dynamically 
on a picture-by-picture basis depending on the coding 
mode, the correlation between consecutive pictures is very 
low, but relatively high between the pictures encoded in 
the same mode. Figure 5 shows a five-second (150 pict­
ures) video traffic signal from the bike scene. A pseudo­
periodic peak traffic is from I pictures, and the medium 
traffic is from P pictures, and the lowest traffic is from B 
pictures. This is a general characteristic independent of a 
flexible GOP sequence because the traffic depends on the 
coding mode, not on the sequence,

The autocorrelation functions of the bike scene and of 

the I, B, and P pictures are shown in Figure 6. The auto­
correlation for the original signal shows significant fluctu­
ation in Figure 6-(a), but the aulocorr아alion of the
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Figure 5. Traffic signal of MPEG vide。：及施 scene.

Figure 6. Autocorrelation functions of bike scene and decom­
posed pictures.

50 - (c) , I '' , --• 1 I I 1 ' r I ,x „ _•

「广'?/ '"，'''「广'N 'U "
°0 毬 Kto 150

Frame

(a) I pictures (b) P pictures (c) B pictures

Figure 7. Traffic signals of the decomposed pictures. 

Figure 8. Prediction errors of four different prediction schemes 
for bike scene.



Adaptive MPEG Traffic Prediction 11

decomposed pictures in Figure 6-(b) decreases smoothly. 
Examining the first autocorrelation function, we find that 
the first autocorrelation coefficient of I pictures o미y is 
much higher than that of the original traffic. The main 
idea in this scheme is to decompose the traffic signal into 
three subsets of pictures coded in the same mode because 
traffic variations in the same coding mode pictures are 
relatively small. For example, the bit rate of 1 pictures 
changes moderately so that the bit rate of a current I pic­
ture will be predictable from the bit rate of the previous I 
picture. The same argument also holds for P and B 

pictures.
The results in Figure 7 depict the decomposed signals 

from the bike scene to show clearly that the signal can be 
readily decomposed into three components. The autocor­
relation functions of the decomposed signals decreases 
smoo사ily for all I, P, and B picture types, from which we 
see that the decomposed signals have high correlations 
between consecutive pictures.

The first autocorrelation coefficients of the traffic sig­
nal before and after decomposition of several scenes are 
presented in Ta아e 2 which shows that the first auto­
correlation coefficient increases dramatically by picture 
decomposition. For example, in the bike scene, the first 
autocorrelation coefficients of the I, P and B pictures 
have increased to 0.96, 0.95, and 0.87 from 0.33 before 
decomposition. Other scenes like table tennis, flower 
garden, and US show similar characteristics.

The traffic changes in decomposed signals are generally 
moderate and are the result of motion or scene changes. 
This implies that the decomposed signals can be used for 
motion or scene analysis of MPEG video.

Table 2. Autocorrelation coefficients.

scene ac(all) ac(D ac(P) ac(B)

bike 0.33 0.96 0.95 0.87

table tennis 0.27 0.94 0.95 0.96

flower garden 0.39 0.96 0.95 0.98

us 0.49 0.96 0.93 0.89

Table 3. Mean prediction error [cells/frame].

scene GOP(m) mean AR(1) AR(m) PD IPB

bike 6 90 98.3 22.7 16.5 10.7

table tennis 6 173 202.6 41.8 22.1 19.6

us 9 60 61.1 22.1 22.8 21.2

startrek 12 111 109.9 41.8 43.2 41.8

football 12 202 215.6 44.6 47.4 36.9

Since the traffic of the pictures coded in the same mode 
have a high correlation and the autocorrelation function 
of the traffic shows a linear decrease, we used the AR 
model for predicting the traffic of the decomposed pict­
ures. The first order AR prediction model based on our 
frame decomposition scheme is given by [7],

K(n) = (1 -ai) rj +%】，(艸-1) +。， zG {/, P, B} (3)

where 出(处)is the traffic from the M-th picture with type 
£ Xj(n — 1) is the traffic from previous picture with the 
same type /, rj is the mean of the traffic signal,但 is the 
first autocorrelation coefYicient of picture type i, and is 
white Gaussian process.

3.3 IPB-Based Prediction

In this section, we provide an extension of the picture- 
decomposed (PD) prediction scheme. The basic notion in 
this scheme is 나lat cross-correlation between different 
types of pictures can be used to enhance the performance 
of 나此 PD prediction scheme. Thus, all different types of 
pictures are used to predict 나】e current frame. The differ­
ence in this scheme from the AR prediction is that the 
prediction coefficients are estimated using both the auto­
correlation and cross-correlation coefficients of decom­
posed signals. Note that in the high-order AR prediction 
scheme, the prediction coefficients are derived from the 
autocorrelation coefficients of the whole signal.

A predicted frame of each type is expressed by

(4)

Pn — d\lln-\ +"22几-| ⑸

Bn = a\yIn-\ + Pn - I + <^33 Bn - \ (6)

where the is the prediction coefficient. To find the predic­
tion coefficients that minimizes the prediction error, we 
take the derivative of the squared prediction error with 
respect to the coefficients. For I frames in Equation (4), 
the squared prediction error is given by

e^Eldn-ln)2]

= 끼 + 如 (7)

where is the squared prediction error for I frames only. 
By taking the derivative of Equation (7) with respect to, 
we obtain

rA0)fln 4-r/P(O)z22i +r/fi(0)a3i = rAD (8)
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r/P(0)a^ +户尸(0)“21 +"8(0)句1 = 并〃시) (9)

and

r/fl(0)<2i! +尸必(0)您1 +zb(0)<23i =nfl(D (10) 

where is the k-th normalized set of autocorrelation coeffic­
ients of a decomposed signal x and is the k-th normalized 
cross-correlation coefficient of decomposed signals x and 

y. Equations (8) through (10) can be expressed as a matrix 
equation by

力(0) rlp(o) r/s(0) aw

5(0)眼0)户捲(o) “2】 = riM (11)
r/B(0) rpS(0) rB(0) &31 F(l)

Simiku^ly, the prediction errors for P and B frames are 
given by, respectively,

e, = E[(.P„~P„Y] (12)

and

eB = £[(B„-S„)2] (13)

The prediction coeflicients for P and B frames can be 
obtained by taking the derivatives of Equations (12) and 
(13). Finally, the prediction coefficients are obtained via 
the matrix equation

"(0) r/p(0) r/B(0) 1 F tzn ai2 ai3 

尸〃>(0) /尸(0) ”尸B(0) ^21 冬2(223 
X/B(0) rPS(0) rfl(0) I I a^\ "22 "23

^X0) r；X0) r/B(0)
”(0) rPB(0)

，‘沽(0) rrfl(0) r^O)

(14)

Equation (14) can be extended to a mXm matrix equat­
ion if we treat all frames in a GOP size m to be of different 
types. For example, in a GOP of IBBPBB, Equation (14) 
becomes a 6x6 matrix equation. This s아leme is different 
from the higher order AR prediction scheme in that the 
autocorrelation coefficients are climated for each type of 
the decomposed signals, and the cross-correlation between 
two different types of signals are also used. Note that in 
the high-order AR prediction scheme, only the auto­
correlation of the original signal is used. 

that of the AR prediction scheme. The various video 
scenes were used for simulation. Figure 8 shows the per­
formance of four prediction schemes.

The first one is a result of the first order AR predic­
tion. The vertical axis is the prediction error in units of 
the number of cells. Since the correlation between con­
secutive frames is very low in this case, the performance 
is quite poor. The second case is the m-th order AR predic­
tion scheme with m equal to the GOP size (m = 6 here). The 
prediction error decreased considerably relative to that of 
AR(1). The third one is the case of the PD prediction 
scheme. The performance of the third scheme is better 
than that of the second one even though only the first or­
der AR prediction was used for the decomposed signal. 
Finally, the performance of IPB-based prediction is prese­
nted. This scheme clearly has the best performance of all.

The mean prediction errors for various video traffic of 
different GOP sizes are presented in Table 3. The unit of 
the prediction error is the number of cells. In the table, m 
is 나】。size of the GOP, and PD denotes picture-decom­
posed prediction. As shown in the table, the IPB-based 
scheme shows the best performance, and the AR(m) and 
PD show similar performance. In general, the first order 
AR(1) s아leme is quite poor for MPEG video traffic since 
the traffic from consecutive frames has low correlation.

IV. Conclusions

In this study, the features of MPEG video coding 
schemes and statistical characteristics have been addressed. 
Since MPEG video is bursty and the traffic has low cor­
relation, prediction schemes used for packet data are not 
effective in VBR video signals. A new prediction scheme 
was proposed, based on the notion that if a signal is decom­
posed according to its coding mode, then the decomposed 
signals have higher correlation than the original signal. 

The prediction scheme based on picture decomposition 
(PD) has better performance in predicting MPEG traffic 
than the autoregressive (AR) method. By extending to 
IPB-based prediction that utilizes the autocorrelation and 
cross-correlations between pictures, our simulation results 
show that the performance has been improved about 
15%. This is caused from that the contribution of the 
cross-correlation property is additional. Our scheme can 
be effectively used for predicting non-MPEG signals that 
can be readily decomposed into subsignals.

3.4 Performance Comparison

In this section, the performance of our prediction 
schemes based on picture decomposition is compared with
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