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Abstract

This paper addresses trafTic prediction issues on MPEG. A new adaptive traffic prediclion scheme is proposed using MPEG
picture characlenstic thal picture traffic depends on the coding mode of that picture, that is, I, P, and B mode. Qur
prediction scheme, which is based on piclure decomposition (PD) and the cross-correlation of the different types of piclures,
has better performance in predicting bursty MPEG traffic than that of the first-order autoregressive (AR) prediction scheme.
Qur simulation resulls show that the performance is further improved about 15% by utilizing the cross-correlations between

pictures.

I. Introduction

The Asynchronous Transfer Mode (ATM) has emerged
as the intermational standard[l, 2} for multipiexing and
swiiching techniques in Broadband Inlcgrated Services
Digital Networks (B-ISDN). It provides for the integrated
support of several lypes and classes of services that have
a very wide range of traffic characteristics and service re-
guircments. For example, an clectronic mail service does
not have critical delay requircments, but is sensitive 1o
data loss. On the other hand, voice nceds to he transported
in real-time, but can tolerate some loss without adversely
affecting voice qualily. However, this is not the case in
video communications since they are highly sensitive to
the loss of bits.

Since the International Standard Organization (1SO)
provided a standard for multimedia applications, called
the Moving Picture Experls Group (MPEG]) |3]. there has
been a great deal of effort devoled to characterizing MPEG
video. MPEG video uses a two-layer coding scheme, in
which a different coding flow is applied on a picture-by-
picture basis to oblain higher compression ratios. As a re-
sult, MPEG traffic is so bursty that il 1s difficull to man-
age it on nctworks., Accurate {ralfic perediction en-
ables us to forecast network congestion so thal we can
prevent it by allocating more bandwidih in advance.

A simple prediction model using the mean amd standard
deviation was proposed for handwidth estimation in (4],
In that model, the standard deviation of video traffic is vs-

ually too large to be used for predicting the traific of the
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nexi picture. An autoregressive (AR) model with a Gaus-
sian process was presented in [5) to model an cncoded
vidco source. This model is suitable for less bursty traffic
such as data traffic, but not for very bursty traffic such as
an MPEG vidco. Yegenoglu el. al [6] proposed a motion-
classificd AR model that uses a different AR parameter
set as 4 lunction of Lheir motion changes. This mode!
uses (hree Lransition slates, viz., high-motion, medium-
motion, and low-motion. The problem is that of determin-
ing the duration of each state. ANl ol these approaches
can he used [or an encoded VBR video, bul they do nol
take full advantage of lhe characteristics of MPEG video
which uses a picture-dependent coding scheme.

In this paper, we investigale how to predict VBR video
effectively in ATM networks. In our prediclion scheme,
we use the characteristics of MPEG video that generate
variable bit rate streams according {o the piclure types.
QOur picture-decomposed prediction scheme oulperforms
the (ypical autoregressive scheme with the same order
prediction due to the increase of the autocorrelation pro-
perty. By utilizing cross-correlations belween different
types of piclures, performance ts cnhanced furlher by
about 15%. The result is from that (he cross-correlation
properly contributes o the performance additionally. In
aulorcgressive scheme, only the aulocorrelation property
of the signal ss used for (he prediction, Qur method That
uses both the awlocorrelation and cross-correlation pro-
perlies of the decomposed signals can be cficctive for
predicting signals thal can be readily decomposed into
subsignals.

The remainder of the paper is organized as follows. In
Scetion 2, the coding scheme for MPEG video and ils
statistical characteristlics are briefly discussed. In Section 3,

our Lraflic prediction schemes which are based on picture
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decomposition are prescnted, and their performance is
compared with that of AR prediction. Finally, our con-

cluding remarks arc presented in Seclion 4. 1
0. Mpeg Video and Statistics \\u

The moving picture experts group (MPEG) is a work-
ing group of the Inlermational Standard Organization
{ISO) to devclop a standard for video and associated

audio on telecommunicalion channels as well as local area

networks. The MPEG aclivities cover video and the as- £

sociated audio compression and the issue of audio-visual i

synchronization. There arc three phases in MPEG stand- g

ardization. The MPEG first-phase (MPEG-1) video com- 2

pression standard, aimed primanly al coding video lor ° 0=

digitat storage media with rates of 1 lo 1.5 Mbps is well rame x 10°
suited for a wide range of applicalions at a variety ol bit 2

rales|7]. The second phase of MPEG (MPEG-2) is aimed at 7;

coding video signals created by CCIR 601, c.g., 720 pixels. ign

480 lincs, 30 framcs per second, 2 to 1 interlace al hil é

rales of 2 Mbps or higher[8)]. The third phase of MPEG € R e L L s
(MPEG-4) addresses the coding of video sipnats al very frame x 10¢

(4) CNN News (b) Princess Bride

low-bit rates[9, 10]. The scope of MPEG-4 is to code pen-
cric aundio-viswal signals at bit rates from [0 (o 64 kbps.
We will briefly describe the coding algorithm of MPEG
vidco to understand the characteristics of MPEG tralfic.

Figure 2. Samples of MPEG fraffic at the frame level.
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fluctuations, the standard deviation is usually comparable oo sorll

to lhe mean of the traffic. o .
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bamp!es of real MPEG video (raffic at the rame level number of celts per frame number of celis per frame

are shown in Figure 2. Inspecting traflic al the {vame
Figure 3. Dastribulions of MPEG traffic al the frame level.

Table ). Stalistics of MPEG tralTic at the rume level,

mean standard .;;.:ak peak-to level, it 15 observed that the rate ol an 1 frame or a P
¢ b ‘ e e ~ 1Y TN . . o . . o
e {cell fframe) | deviation } (cell/frame) | average ratio [rame is much higher than that of a B frame. regardless
) star trek . | 1 90 474 4_,-7“ ' of GOP formal. This resul(s ltom (he Fact that the bidirect-
___f;olball. '_'"_,02 I;(.)_“ Iﬂt,\; T 157 ional prediction and large quantization sleps are used lor
b_k ’ _9_0 T 1;6 '_'"]'('4 - B frames. It is also observed that he bil rate of an |
ke 30 3.38
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table tennis 173 182 582 336 . . .
= - . that is nol lhe case of a scene change since Lhe P [rame is
5 263 4
.l w0 2 6 e coded the same as an | [rame when the energy of the pre-
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diction error is higher than that of the original frame.

The distributions of two MPEG traffic source at the
frame level are presenled in Figure 3. The scenes are
CNN News and the movie Princess Bride. Both scenes are
about 90 minutes long, and it is difficult to discern from
the figure exaclly what the distributions resemble. The den-
sity in fow bil rates is high for bolh scenes. This result is
natural since MPEG videos are coded based on the GOP.
Note that a GOP has more B pictures than 1 or P pict-
ures in this case, and a B picture gencrates lower biis
than an T or P picture. It can ilso be noted that the distn-
butions do not resembie the Gaussian function. A study
shows that the VBR video (lraffic resembled a Gamma
function(11]. But, from our observations, the distributions
of MPEG vidco basically depend on scene and motion
changes of the sequence. More exlensive studies on math-
ematical medeling of distributions are tequired. We will
investigate the stalistics of MPEG traffic at the slice level
1o look at more details of traffic variations.

A number of analysis studics on trafflic at the frame
level and cell level have been performed so Tar{13-15]. The
analysis at the frame lcvel has focused on source modeling,
and the analysis at the cell level has focused on a queucing
model of the average delay. We will look al the slatistics
of traffic al the slice level. A shice is assumed as a single
horizontal set of macroblocks. When the video data are
packetized into a ATM cell, the packctizer has to wait lor
a while until it collecls a quantity of dala to packelize.
After collecting data, the packetizer encapsules the dala
into a number of cells, and sends them to nelworks. The
period for the data collection can be a frame. slice, or
even macroblock. The interval of a frame, 1/30 sec in
gencral, is not a small delay for packetization since the
qucueing and propagation delays will he added to (his.
Data bits Iess than a cell are gencrated from a macro-
block with the picture of sizc 352X 240. It is a desirable
assumption, therelore, that the generated data are col-
lected during a slice interval and then packelized.

In gencral, the statistical characteristics of MPEG
videos show Lhat MPEG (raflic is quite bursty at the
frame level, and have a distribution that is not a specific
function. From (he perspective of nclwork side. bursty
tralic is difficult to manage since Lhey are apl (o cause
congestions and buffer overflows. To predict and prevent
congestions and buffer overflows due to the burstiness,
tralfic modeling and resource allocation for VBR video
source are imporlant issues (hal have to be addressed for

the spread of video communicalions over ATM networks.

M. Traffic Prediction

3.1 Autoregressive { AR) Prediction

Many prediction schemes have been developed for time
series analysis. The autoregressive {AR) and autoregrcs-
sive moving average (ARMA) predictions arec among the
major prediclion methods that are widely used. A number
of studies show that they can model VBR video sources
[4. 6. The dilferent usages of AR and ARMA depend on
the shape of the autocorrelation funclion. It is known
that AR is cffective for a signal wilh a linearly decreasing
autocorrelation function. On the other hand, ARMA is
the choice for a signal with an exponcntially decreasing
aulocorrelation function[16]. In this seclion, we will re-
view some of the theoretical background for AR pred-
iction scheme, and then investigate its performance for
MPEG video streams.

Suppose that Xn is a random sequence of the bit rate
at the n-th frame. The m-th order AR prediction is given by

Xa= 32 axXy & ten (1)
Al
where the is the prediction coellicient and is the predic-

tion error. The prediction coefficients are obtained by the
Yule-Walker equation[17f as shown in Appendix,

Yo L T £ 5 | &, 1
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The performance of the AR prediction scheme was in-
vesligaled by varying the prediclion order m. The test data
is the bike scene with 4 GOP size of 6 (IBBPBB). The
mean prediction error vs. the order of the AR prediclion
is shown in Figure 4. At a low order of m=1 or 2, the per-
formance of the AR prediction scheme is very poor since
the correlation of two consecutive frames (I and B, or P
and B) is very low. The prediction error, however, drops
quile a bit al m= 3 and 6. This is due to the fact that the
previous P or | pictures were included when predicling a
new P or [ piclure. For exampie, al m =3, iwo B piclures
and an | (or P} picture were used 1o predict a new P (or
1) piclure. Al m= 6, a previous I picture, a P picture, and
four B pictures were used lo predicl an 1 or P picture,
Afler m=40, the performance converges to a certain
value. We conclude that the prediction order m should be
grealer than or at least equal 1o the GOP size of traffic to

oblain good prediction resulls.
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Figure 4. Performance of AR prediclion.

3.2 Picture-Decomposed (PD) Prediction

Since MPEG video is bursty and changes dynamically
on a picturc-by-picture basis depending on the coding
mode, Lhe correlation between conseculive pictures is very
low, but rclatively high between the piclures encoded in
the same mode. Figure 5 shows a five-second {150 pict-
ures} video traffic signal from the bike scene. A pseudo-
periodic peak traffic is from | picturcs, and the medium
traffic is from P pictures, and the lowest traffic is from B
picturcs. This is a general characteristic independent of a
flexible GOP sequence because the traffic depends on the
coding mode, not on the sequence,

The aulocorrelation functions of the bike scene and of
the I, B, and P pictures arc shown in Figure 6. The auto-
correlation for the original signal shows significant Muciu-

ation in Figure 6-(a), but the autocorrelation of the
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Figure 5. Traffic signal of MPEG video : b7ke scene.
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decomposed pictures in Figure 6-(b) decreases smoolhly.
Examining the first autocorrelation function, we find that
the first autocorrelation coefficient of I pictures only is
much higher than that of the original traffic. The main
idea in this scheme is to decompose the traffic signal into
three subsels of pictures coded in the same mode because
traffic variations in the same coding mode piclures are
relatively small. For example, the bit rate of 1 piclures
changes moderalely so that the bit rate of a current I pic-
ture will be predictable from the bit rate of the previous |
picture. The same argument also holds for P and B
piclures.

The results in Figure 7 depict the decomposed signals
from the bike scene to show clearly that the signal can be
readily decomposed into three components. The autocor-
relation functions of the decomposed signals decreases
smoothly for all 1, P, and B picture types, from which we
sce that the decomposed signals have high correlations
between consecutive pictures.

The first autocorrelation coefficients of the (raffic sig-
nal before and after decompeosition of several scenes are
presented in Table 2 which shows that the first auto-
correfation coefficient increases dramatically by picture
decomposition. For example, in the bike scene. the first
autocorrelation coefficients of the I, P and B pictures
have increased to 0.96, 0.95, and 0.87 from (.33 before
decomposition. Other scenes like table tennis, flower
garden, and US show similar characteristics.

The traffic changes in decomposed signals are generally
moderate and are the result of molion or scene changes.
This implies that the decomposed signals can be used for
metion or scene analysis of MPEG video.

Table 2. Autocorrelation coefficients,

scene ac(all) ac() ac(P) ac{B)
bike 0;1 B ?’%_— —09; 1 0.87_
| ubletennis | 027 | o054 | 095 | 09
flower ga.rdcn 0.39 0.96 ) 0—95 ] 3_98_
—_:_"_- _'—_.{-);9 b F%ﬁ " 093 T 0.8¢

Table 3. Mean prediction error [cells/frame).

_ scene  |GOP(m)| mean | AR(I) |AR(m)) PD | IPR

hike 6 90 9R.3 22.7 16.5 10,7
[wabte tennis | 6 | 173 | 2006 | 418 | 221 | 196
| ws | 9 | 60 | ent | 221 | 228 212
sk | 02 | nn 099 | wis a2 | ais
football 12 202 215.6 446 474 36.9

11

Since the traffic of the pictures coded in the same mode
have a high correlation and the autocorrelation function
of the traffic shows a linear decrease, we used the AR
model for predicting the traffic of the decomposed pict-
ures. The first order AR prediction model based on our

frame decomposition scheme is given by [7],
Xm=(l-a)n +a;xin—1) +e, i€{i P, B} 3)

where X;(n) is the trafflic from the n-th picture with type
1, X{n—1) is the traflic from previous picture with the
same type /, n is the mean of the traffic signal, &; is the
first autocorrelation coefficient of picture type i, and is
white Gaussian process.

3.3 IPB-Based Prediction

[n this section, we provide an extension of the picture-
decomposcd (PD) prediction scheme. The basic notion in
this scheme is thal cross-correlation between different
Lypes of pictures can be uscd to enhance the performance
of the PD prediction scheme. Thus, alt different types of
pictures are used to predict the current frame. The differ-
ence in this scheme from the AR prediction is that the
prediction coeflicients are eslimated using both the auto-
correlation and cross-correlation coeflicients of decom-
posed signals. Note that in the high-order AR prediction
scheme, the prediction coefficients arc derived from the
aulocorrelation coefficients of {he whole signal,

A predicted frame of each type is expressed by

!,.=0||I,,-| +02|Pn-| +a318n--1 (4)
Pu=@idn-1 + 30 Pu-y a0 Bu-) (5)
&,=a|3]n—| F a3 Pr- Fa By {6)

where the is the prediction coeificient. To find the predic-
tion coefficients that minimizes the prediction error, we
take the derivative of the squared prediction error with
respect to the coefficients. For T frames in Equation (4),

the squared prediction error is given by

er= E[(In—1)?)
= ElI—(@nia-y +a31,Pacy +anBa )P (D

where is the squared prediction crror for { frames only.
By taking the derivative of Equation (7) wilh respect to,

we obtain

r&0yay +rl0)an +7(0)an =rL1) 8)
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ril®an +7p(0ayn +7pd0)ay =rnll) 9)
and
ra0)an +rpay +r0)as =7(1) (10}

where is lhe k-1h normalized set of autocorrelation coeflic-
icnts of a decomposed signal x and is the k-th normalized
cross-correlation coefficien] of decomposed signals x and

y. Equations (8) through (10) can bc expressed as a matrix

cqualion by
yA0)  #p(0} (D) | | an rf1)
7100} 7 K0) 7 p(0) an|=| »{1) ()

710} 7p0) 740) | | @ rud1)

Similarly, the prediction errors for P and B frames are
given by, respectively,

er=E[(Pa~ P, a2
and
ea= E[(Ba— Ba)?) (13)

The prediction cocfficients for P and B [rames can be
obtained by taking the derivatives of Equalions (£2) and
(13). Finally, the prediction cocfficicnts arc obtained via

the malrx cquation

rd0) 70} 7150 | [ @1\ @y @iy 7A0Y 740} 7,4(0)

10} 7A0} 0| | @ @y an | = | 710) #40) #p4(0)

718(0) 720} 740} || @n a2 an ris{0) ¥ pa(0) 7 {0)
(14)

Equation {14} can be extended to a mXm malrix cqual-
ion if we treat all frames tn a GOP size m 1o be of different
types. For example, in a GOP of 1BBPBB, Equation (14)
becomes a 6 X6 matrix equation. This schemc is different
from the higher order AR prediction scheme in thal the
autocorrelation cocfficients arc eslimated for each (ype of
the decomposed signals, and the cross-correlation between
two different types of sighals are also used. Note thal in
the high-order AR prediction scheme, only the auto-

correlation of the original signal is used.

3.4 Performance Comparison
In this scction, the performance of our prediction

schemes based on piclure decomposition is compared with
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that of the AR prediction scheme. The various vidco
scenes were used [or simulation. Figure 8 shows the per-
formance of four prediction schemes.

The first one is a result of the first order AR predic-
tion. The vertical axis is the prediction error in unils of
the number of cells. Since the correlation between con-
secutive frames s very low in this case, the performance
is quile poor. The second case is the m-th order AR predic-
tion scheme with m equal to the GOP size (m=6 here). The
prediction error decrcased considerably relative to that of
AR(1). The third one is the case of the PD prediction
scheme. The performance of the third scheme is better
than that of the second one even though only the first or-
der AR prediction was used for the decomposed signal.
Finally, the performance of IPB-based prediction is prese-
nied. This scheme clearly has the best performance of ail.

The mean prediction crrors for various video traffic of
different GOP sizes are presented in Table 3. The unit of
the prediction error ts the number of cells. 1n the table, m
is the size of the GOP, and PD denctes piclure-decom-
posed prediction. As shown in the table, the IPB-based
scheme shows the best performance, and the AR(m) and
PD show similar performance. In general, the first order
AR(1} scheme is quite poor for MPEG video traffic sincc

the traffic from consccutive ftames has low correlation.
I¥. Conclusions

In this study, the features of MPEG video coding
schemes and statistical characteristics have been addressed.
Since MPEG video is bursty and the traflic has low cor-
rclation, prediction schemes used for packet data are not
clfective in VBR video signals. A new prediction scheme
was proposed, based on the notion that if a signal is decom-
posed according 10 i1s coding mode, then the decomposed
signals have higher corselation than the original signal.
The prediction scheme based on picture decomposition
(PD) has belter performance in predicting MPEG traffic
than the autorcgressive {(AR) method. By extending lo
IPB-based prediction (hat utilizes the autocorrelation and
cross-correlations belween picturcs, our simulation results
show thal the performance has been improved about
15%. This is caused from ihat the contribution of the
cross-correfation property is additional. Qur scheme can
be effectively used for predicting non-MPEG signals that

can be readily decomposed into subsignals.
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