• Title/Summary/Keyword: Prediction of Storage Period

Search Result 51, Processing Time 0.032 seconds

Coupled Thermal-Hydrological-Mechanical Behavior of Rock Mass Surrounding Cavern Thermal Energy Storage (암반공동 열에너지저장소 주변 암반의 열-수리-역학적 연계거동 분석)

  • Park, Jung-Wook;Rutqvist, Jonny;Ryu, Dongwoo;Synn, Joong-Ho;Park, Eui-Seob
    • Tunnel and Underground Space
    • /
    • v.25 no.2
    • /
    • pp.155-167
    • /
    • 2015
  • The thermal-hydrological-mechanical (T-H-M) behavior of rock mass surrounding a high-temperature cavern thermal energy storage (CTES) operated for a period of 30 years has been investigated by TOUGH2-FLAC3D simulator. As a fundamental study for the development of prediction and control technologies for the environmental change and rock mass behavior associated with CTES, the key concerns were focused on the hydrological-thermal multiphase flow and the consequential mechanical behavior of the surrounding rock mass, where the insulator performance was not taken into account. In the present study, we considered a large-scale cylindrical cavern at shallow depth storing thermal energy of $350^{\circ}C$. The numerical results showed that the dominant heat transfer mechanism was the conduction in rock mass, and the mechanical behavior of rock mass was influenced by thermal factor (heat) more than hydrological factor (pressure). The effective stress redistribution, displacement and surface uplift caused by heating of rock and boiling of ground-water were discussed, and the potential of shear failure was quantitatively examined. Thermal expansion of rock mass led to the ground-surface uplift on the order of a few centimeters and the development of tensile stress above the storage cavern, increasing the potential of shear failure.

A Study on Precise Tide Prediction at the Nakdong River Estuary using Long-term Tidal Observation Data (장기조석관측 자료를 이용한 낙동강 하구 정밀조위 예측 연구)

  • Park, Byeong-Woo;Kim, Tae-Woo;Kang, Du Kee;Seo, Yongjae;Shin, Hyun-Suk
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.28 no.6
    • /
    • pp.874-881
    • /
    • 2022
  • Until 2016, before discussions on the restoration of brackish water of the Nakdong River Estuary started in earnest, the downstream water level was predicted using the data of existing tide level observatories (Busan and Gadeokdo) several kilometers away from the estuary. However, it was not easy to carry out the prediction due to the dif erence in tide level and phase. Therefore, this study was conducted to estimate tide prediction more accurately through tidal harmonic analysis using the measured water level affected by the tides in the offshore waters adjacent to the Nakdong River Estuary. As a research method, the storage status of observation data according to the period and abnormal data were checked at 10-minute intervals in the offshore sea area near the Nakdong River Estuary bank, and the observed and predicted tides were measured using TASK2000 (Tidal Analysis Software Kit) Package, a tidal harmonic analysis program. Regression analysis based on one-to-one comparison showed that the correlation between the two components was high correlation coef icient 0.9334. In predicting the tides for the current year, if possible, more accurate data can be obtained by harmonically analyzing one-year tide observation data from the previous year and performing tide prediction using the obtained harmonic constant. Based on this method, the predicted tide for 2022 was generated and it is being used in the calculation of seawater inflow for the restoration of brackish water of the Nakdong River Estuary.

Quality Factor Determination and Shelf-Life Prediction of Emulsified Ginseng Drink (인삼 유화 음료의 품질 인자 규명 및 저장 수명 예측)

  • Baik, Eun-Kyung;Seo, Yong-Ki;Lee, Geun;Lee, Dong-Un;Park, Seok-Jun;Lee, Jin-Hee;Lee, Kang-Pyo;Kim, Dong-Seob;Hur, Nam-Yun;Baik, Moo-Yeol
    • Korean Journal of Food Science and Technology
    • /
    • v.37 no.4
    • /
    • pp.597-602
    • /
    • 2005
  • Quality factors of emulsified ginseng drink were determined during storage at various temperatures, and its shelf-life was predicted based on changes in emulsion stability, acidify, viscosity, and yellowness. Viscosity was highly dependent on storage temperature. Emulsion stability changed rapidly during early storage period (1st step), then slowly thereafter (2nd step). $Q_{10}$ values of emulsion stability were 2.50 and 1.38 for 1st and 2nd steps, respectively. Viscosity, acidity, and yellowness showed $Q_{10}$ values of 3.45, 1.77, and 1.99, respectively. Although $Q_{10}$ value of 2 has been generally used to predict shelf stability of food materials, our results suggest adopting same $Q_{10}$ value to predict shelf stability of emulsified ginseng drink is not appropriate.

Combined analysis of meteorological and hydrological drought for hydrological drought prediction and early response - Focussing on the 2022-23 drought in the Jeollanam-do - (수문학적 가뭄 예측과 조기대응을 위한 기상-수문학적 가뭄의 연계분석 - 2022~23 전남지역 가뭄을 대상으로)

  • Jeong, Minsu;Hong, Seok-Jae;Kim, Young-Jun;Yoon, Hyeon-Cheol;Lee, Joo-Heon
    • Journal of Korea Water Resources Association
    • /
    • v.57 no.3
    • /
    • pp.195-207
    • /
    • 2024
  • This study selected major drought events that occurred in the Jeonnam region from 1991 to 2023, examining both meteorological and hydrological drought occurrence mechanisms. The daily drought index was calculated using rainfall and dam storage as input data, and the drought propagation characteristics from meteorological drought to hydrological drought were analyzed. The characteristics of the 2022-23 drought, which recently occurred in the Jeonnam region and caused serious damage, were evaluated. Compared to historical droughts, the duration of the hydrological drought for 2022-2023 lasted 334 days, the second longest after 2017-2018, the drought severity was evaluated as the most severe at -1.76. As a result of a linked analysis of SPI (StandQardized Precipitation Index), and SRSI (Standardized Reservoir Storage Index), it is possible to suggest a proactive utilization for SPI(6) to respond to hydrological drought. Furthermore, by confirming the similarity between SRSI and SPI(12) in long-term drought monitoring, the applicability of SPI(12) to hydrological drought monitoring in ungauged basins was also confirmed. Through this study, it was confirmed that the long-term dryness that occurs during the summer rainy season can transition into a serious level of hydrological drought. Therefore, for preemptive drought response, it is necessary to use real-time monitoring results of various drought indices and understand the propagation phenomenon from meteorological-agricultural-hydrological drought to secure a sufficient drought response period.

The Prediction of Self-life on Functional Beverage (기능성 음료의 유통기간 예측)

  • Lee Gee-Dong;Kim Jung-Ok;Kim Min-Sun;Lee Kang-Pyo
    • Food Science and Preservation
    • /
    • v.13 no.2
    • /
    • pp.154-160
    • /
    • 2006
  • Shelf-life of functional beverage for the purpose of body fat reduction during storage was estimated at different temperatures. To estimate quality change of functional beverage, vacuum gauge, sugar concentration pit acidify, Hunter's color value, browning color intensity, total cell count and sensory evaluation were measured periodically. Vacuum gauge, sugar concentration pH and acidity were little changed and total cell count was not detected. By using the correlation coefficient between sensory evaluation and physicochemical properties, b-value was chosen for quality index of functional beverage. $Q_{10}-values$ for shelf-life were in the range of $2.13{\sim}2.59$. When sensory evaluation was 2.5 at $50^{\circ}C$, storage period was 6.83 weeks. And shelf-life calculated by $Q_{10}-values$ were 73.89, 34.21 and 13.21 weeks in $20^{\circ}C,\;30^{\circ}C\;and\;40^{\circ}C$, respectively.

Effect of Hydrogen on Stainless Steel and Structural Steel Using Electrochemical Charging Facility (전기화학적 장입 설비를 활용한 스테인리스강 및 구조용강의 수소 영향 분석)

  • Ki-Young Sung;Jeong-Hyeon Kim;Jung-Hee Lee;Jung-Won Lee
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.26 no.4_2
    • /
    • pp.705-713
    • /
    • 2023
  • The phenomenon of abnormal climate conditions resulting from greenhouse gas-induced global warming is increasingly prevalent. To address this challenge, global initiatives are underway to adopt environmentally friendly, zero-emission fuels. In this study, we investigate the hydrogen embrittlement characteristics of materials used for eco-friendly hydrogen storage systems. The effects of hydrogen embrittlement on austenitic stainless steels of the FCC series and structural steel of the BCC series were examined. Initially, test samples of three different steel types were prepared in 2t and 3t sizes, and hydrogen was injected into the specimens using an electrochemical method over a 24-hour period. Subsequently, a universal material testing machine (UTM) was employed to monitor changes in mechanical strength and elongation. The FCC series stainless steels exhibited a tendency for elongation to decrease, indicating low sensitivity to hydrogen. In contrast, the mechanical strength and elongation of the BCC series steel changed significantly upon hydrogen charging, posing challenges for prediction. The results of the present study are expected to serve as a fundamental database for analyzing the impact of hydrogen embrittlement on both FCC and BCC series steel materials.

Development of Multistage Concentrating Solar Collector - I. Thermal performance of multistage cylindrical parabolique concentrating solar collector (다단이차원(多段二次元) 집광식(集光式) 태양열(太陽熱) 집열기(集熱器) 개발(開發)에 관(關)한 연구(硏究) - I. 다단이차원(多段二次元) 집광식(集光式) 태양열(太陽熱) 집열기(集熱器)의 열적(熱的) 성능분석(性能分析))

  • Song, Hyun-Kap
    • Solar Energy
    • /
    • v.6 no.2
    • /
    • pp.3-14
    • /
    • 1986
  • It is desirable to collect the solar thermal energy at relatively high temperature in order to minimize the size of thermal storage system and to enlarge the scope of solar thermal energy utilization. In this study, to develop a solar collector that has both advantages of collecting solar thermal energy at high temperature and fixing conveniently the collector system for long term period, a cylindrical parabolique concentrating solar collector (M.C.P.C.S.C) was designed, which has several rows of parabolique reflectors and thin thickness such as the flat-plate solar collector, maintaining the optical form of concentrating solar collector. The thermal performance of the M.C.P.C.S.C. newly designed in this study was analysed theoretically and experimentally. The results are summarized as follows: 1) prediction equation for outlet temperature, $T_o$, of heat transfer fluid and for the thermal efficiency, ${\eta}$, of the collector were derived as; o $$T_o=[C+B1_n(\frac{I_c(t)}{pv^3})]T_i$$ o $${\eta}=\frac{A}{A_c}\dot{m}[(C-1)+B1_n(E{\cdot}di^6\frac{I_c(t)}{\dot{m}^3})]\frac{T_i}{I_c(t)}$$ 2) When the insolation on the tilted solar collector surface, $I_c$, was $900-950W/m^2$ and the heat transfer fluid was not circulated in tubular absorber, the maximum temperature on the absorber surface was $100-118^{\circ}C$, this result suggested that the heat transfer fluid could be heated up to $98-116^{\circ}C$. The maximum temperature on the absorber surface was decreased with the increase of the collector shape factor, $L_p/L_w$ 3) There was a good agreement between the experimental and theoretical value of solar collector efficiency, ${\eta}$, which was proportional to the collector shape factor, $L_p/L_w$ 4) It is desirable to continue the study on the relationship between the collector shape factor, $L_p/L_w$, and the thermal efficiency of solar collector.

  • PDF

Shelf Life Prediction of Seasoned Anchovies packaged with PET/EVOH Film (포장(PET/EVOH Film) 멸치조미가공품의 유통기한 예측)

  • Lee, Eui-Seok;Lee, Hyong-Ju;Bae, Jae-Seok;Kim, Yong-Kuk;Lee, Jong-Hyeouk;Hong, Soon-Taek
    • Journal of the East Asian Society of Dietary Life
    • /
    • v.23 no.6
    • /
    • pp.827-832
    • /
    • 2013
  • An attempt is made to predict the shelf life of seasoned anchovies packaged with laminated film, composed of polyethylene terephthalate (PET) and ethylene vinyl alcohol (EVOH). First, a descriptive sensory analysis is carried out to determine the principal sensory quality index in seasoned anchovies. Then, the physicochemical quality index with high correlation to the principal sensory quality index is determined accordingly. Subsequently, with the physicochemical quality index, the shelf-life is estimated by using the Arrhenius equation. As for the sensory quality index, 'color' is determined as a principal sensory quality index. For all samples stored at 3 different temperatures (25, 35, $45^{\circ}C$), it is observed that the sensory score is shown to be over 2.5 until 60 days of storage period, which is the lowest acceptable level. In addition, the b-value, as a physicochemical quality index, is determined to have a high correlation to the sensory quality index. Further, the activation energy and the Q10 value for the b-value by the Arrhenius equation is found to be 11.24 kcal/mol, 1.385~2.011, respectively. Thus, it can be concluded that the shelf life of seasoned anchovies packaged with PET/EVOH film is estimated to be 279.44 days when stored at $20^{\circ}C$.

Development of lumped model to analyze the hydrological effects landuse change (토지이용 변화에 따른 수문 특성의 변화를 추적하기 위한 Lumped모형의 개발)

  • Son, Ill
    • Journal of the Korean Geographical Society
    • /
    • v.29 no.3
    • /
    • pp.233-252
    • /
    • 1994
  • One of major advantages of Lumped model is its ability to simulate extended flows. A further advantage is that it requires only conventional, readily available hydrological data (rainfall, evaporation and runoff). These two advantages commend the use of this type of model for the analysis of the hydrological effects of landuse change. Experimental Catchment(K11) of Kimakia site in Kenga experienced three phases of landuse change for sixteen and half years. The Institute of Hydrology offered the hydrological data from the catchment for this research. On basis of Blackie's(l972) 9-parameter model, a new model(R1131) was reorganized in consideration of the following aspects to reflect the hydrological characteristics of the catchment: 1) The evapotranspiration necessary for the landuse hydrology, 2) high permeable soils, 3) small catchment, 4) input option for initial soil moisture deficit, and 5) othel modules for water budget analysis. The new model is constructed as a 11-parameter, 3-storage, 1-input option model. Using a number of initial conditions, the model was optimized to the data of three landuse phases. The model efficiencies were 96.78%, 97.20%, 94.62% and the errors of total flow were -1.78%, -3.36%, -5.32%. The bias of the optimized models were tested by several techniques, The extended flows were simulated in the prediction mode using the optimized model and the data set of the whole series of experimental periods. They are used to analyse the change of daily high and low-flow caused by landuse change. The relative water use ratio of the clearing and seedling phase was 60.21%, but that of the next two phases were 81.23% and 83.78% respectively. The annual peak flows of second and third phase at a 1.5-year return period were decreased by 31.3% and 31.2% compared to that of the first phase. The annual peak flow at a 50-year return period in the second phase was an increase of only 4.8%, and that in the third phase was an increase of 12.9%. The annual minimum flow at a 1.5-year return period was decreased by 34.2% in the second phase, and 34.3% in the third phase. The changes in the annual minimum flows were decreased for the larger return periods; a 20.2% decrease in the second phase and 20.9% decrease in the third phase at a 50-year return period. From the results above, two aspects could be concluded. Firstly, the flow regime in Catchment K11 was changed due to the landuse conversion from the clearing and seedling phade to the intermediate stage of pine plantation. But, The flow regime was little affected after the pine trees reached a certain height. Secondly, the effects of the pine plantation on the daily high- and low-flow were reduced with the increase in flood size and the severity of drought.

  • PDF

Application of High Resolution Multi-satellite Precipitation Products and a Distributed Hydrological Modeling for Daily Runoff Simulation (고해상도 다중위성 강수자료와 분포형 수문모형의 유출모의 적용)

  • Kim, Jong Pil;Park, Kyung-Won;Jung, Il-Won;Han, Kyung-Soo;Kim, Gwangseob
    • Korean Journal of Remote Sensing
    • /
    • v.29 no.2
    • /
    • pp.263-274
    • /
    • 2013
  • In this study we evaluated the hydrological applicability of multi-satellite precipitation estimates. Three high-resolution global multi-satellite precipitation products, the Tropical Rainfall Measuring Mission (TRMM) Multi-satellite Precipitation Analysis (TMPA), the Global Satellite Mapping of Precipitation (GSMaP), and the Climate Precipitation Center (CPC) Morphing technique (CMORPH), were applied to the Coupled Routing and Excess Storage (CREST) model for the evaluation of their hydrological utility. The CREST model was calibrated from 2002 to 2005 and validated from 2006 to 2009 in the Chungju Dam watershed, including two years of warm-up periods (2002-2003 and 2006-2007). Areal-averaged precipitation time series of the multi-satellite data were compared with those of the ground records. The results indicate that the multi-satellite precipitation can reflect the seasonal variation of precipitation in the Chungju Dam watershed. However, TMPA overestimates the amount of annual and monthly precipitation while GSMaP and CMORPH underestimate the precipitation during the period from 2002 to 2009. These biases of multi-satellite precipitation products induce poor performances in hydrological simulation, although TMPA is better than both of GSMaP and CMORPH. Our results indicate that advanced rainfall algorithms may be required to improve its hydrological applicability in South Korea.