• Title/Summary/Keyword: Prediction map

Search Result 570, Processing Time 0.026 seconds

A Study on the Computation and Application of Sound Power Level for Road Traffic Noise (도로교통소음 음향파워레벨 산정과 응용에 관한 연구)

  • 김득성;오진우;홍세화;이기정;장서일
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.527-534
    • /
    • 2004
  • This study is a paper relating to between road traffic noise(RTN) and sound power level(PWL). At present to prediction of RTN is used to many experimental models and prediction methods. RTN is computed PWL using existing experimental models and prediction methods. Then, computed PWL is compared with it of measurement value, in them, it is selected model most similar to measurement value. And then, this results will watch for make Noise Map, as application field applied to computed results.

  • PDF

A Study on Application using ASJ 2008 Prediction Model according to Vehicle Classification (차량 분류에 따른 ASJ 2008 예측 모델 적용에 관한 연구)

  • Park, Jae Sik;Yun, Hyo Seok;Han, Jae Min;Park, Sang Kyu
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2012.10a
    • /
    • pp.153-158
    • /
    • 2012
  • Noise maps are produced according to 'The Method of making a Noise Map' in order to noise control efficiently, and prediction model to predict road traffic noise which may apply to Korean situation, include CRTN, RLS 90, NMPB, Nord 2000 and ASJ 2003. Of them, ASJ 2003, Japan's prediction model has not been verified for the application to Korean situation according to the classification of vehicle. In addition, ASJ 2003 was revised to ASJ 2008 recently, a classification for motorcycle was added. This study attempts to check the classification of vehicle in ASJ 2008 and 'The Method of making a Noise Map' to confirm the suitability of the application of them to Korean situation.

  • PDF

Flashover Prediction of Polymeric Insulators Using PD Signal Time-Frequency Analysis and BPA Neural Network Technique

  • Narayanan, V. Jayaprakash;Karthik, B.;Chandrasekar, S.
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.4
    • /
    • pp.1375-1384
    • /
    • 2014
  • Flashover of power transmission line insulators is a major threat to the reliable operation of power system. This paper deals with the flashover prediction of polymeric insulators used in power transmission line applications using the novel condition monitoring technique developed by PD signal time-frequency map and neural network technique. Laboratory experiments on polymeric insulators were carried out as per IEC 60507 under AC voltage, at different humidity and contamination levels using NaCl as a contaminant. Partial discharge signals were acquired using advanced ultra wide band detection system. Salient features from the Time-Frequency map and PRPD pattern at different pollution levels were extracted. The flashover prediction of polymeric insulators was automated using artificial neural network (ANN) with back propagation algorithm (BPA). From the results, it can be speculated that PD signal feature extraction along with back propagation classification is a well suited technique to predict flashover of polymeric insulators.

The cluster-indexing collaborative filtering recommendation

  • Park, Tae-Hyup;Ingoo Han
    • Proceedings of the Korea Inteligent Information System Society Conference
    • /
    • 2003.05a
    • /
    • pp.400-409
    • /
    • 2003
  • Collaborative filtering (CF) recommendation is a knowledge sharing technology for distribution of opinions and facilitating contacts in network society between people with similar interests. The main concerns of the CF algorithm are about prediction accuracy, speed of response time, problem of data sparsity, and scalability. In general, the efforts of improving prediction algorithms and lessening response time are decoupled. We propose a three-step CF recommendation model which is composed of profiling, inferring, and predicting steps while considering prediction accuracy and computing speed simultaneously. This model combines a CF algorithm with two machine learning processes, SOM (Self-Organizing Map) and CBR (Case Based Reasoning) by changing an unsupervised clustering problem into a supervised user preference reasoning problem, which is a novel approach for the CF recommendation field. This paper demonstrates the utility of the CF recommendation based on SOM cluster-indexing CBR with validation against control algorithms through an open dataset of user preference.

  • PDF

Application of Prediction Rate Curves to Estimation of Prediction Probability in GIS-based Mineral Potential Mapping (GIS 기반 광물자원 분포도 작성에서 예측 확률 추정을 위한 예측비율곡선의 응용)

  • Park, No-Wook;Chi, Kwang-Hoon
    • Korean Journal of Remote Sensing
    • /
    • v.23 no.4
    • /
    • pp.287-295
    • /
    • 2007
  • A mineral potential map showing the distributions of potential areas for exploration of undiscovered mineral deposits is a kind of predictive thematic maps. For any predictive thematic maps to show reasonably significant prediction results, validation information on prediction capability should be provided in addition to spatial locations of high potential areas. The objective of this paper is to apply prediction rate curves to the estimation of prediction probability of future discovery. A case study for Au-Ag mineral potential mapping using geochemical data sets is carried out to illustrate procedures for estimating prediction probability and for an interpretation. Through the case study, quantitative information including prediction rates and probability obtained by prediction rate curves was found to be very important for the interpretation of prediction results. It is expected that such quantitative validation information would be effectively used as basic information for cost analysis of exploration and environmental impact assessment.

A Modified Logistic Regression Model for Probabilistic Prediction of Debris Flow at the Granitic Rock Area and Its Application; Landslide Prediction Map of Gangreung Area (화강암질암지역 토석류 산사태 예측을 위한 로지스틱 회귀모델의 수정 및 적용 - 강릉지역을 대상으로)

  • Cho, Yong-Chan;Chae, Byung-Gon;Kim, Won-Young;Chang, Tae-Woo
    • Economic and Environmental Geology
    • /
    • v.40 no.1 s.182
    • /
    • pp.115-128
    • /
    • 2007
  • This study proposed a modified logistic regression model for a probabilistic prediction of debris flow on natural terrain at the granitic rock area. The modified model dose not contain any categorical factors that were used in the previous model and secured higher reliability of prediction than that of the previous one. The modified model is composed of lithology, two factors of geomorphology, and three factors of soil property. Verification result shows that the prediction reliability is more than 86%. Using the modified regression model, the landslide prediction maps were established. In case of Sacheon area, the prediction map showed that the landslide occurrence was not well corresponded with the model since, even though the forest-fred area was distributed on the center of the model, no factors were considered for the landslide predictions. On the other hand, the prediction model was well corresponded with landslide occurrence at Jumunjin-Yeongok area. The prediction model developed in this study has very high availability to employ in other granitic areas.

A Study on Suitability of Road Traffic Noise Map for Environmental Noise Impact Assessment (환경소음 영향평가 시 도로교통 소음지도의 적용성 검토 연구)

  • Kim, Ji-Yoon;Park, Sang-Kyu
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2008.11a
    • /
    • pp.311-316
    • /
    • 2008
  • It is needed to assess the impact of the road traffic noise for city planning. In Korea, the current noise impact assessment h3s not yet considered the impacts of the multiple reflection, the deflection and the ground attenuation caused by buildings and other obstacles. A noise map is useful tool to solve this problems. But before everything else, suitability of noise map must be assessed for variety of geometry conditions. In this study, we assessed suitability of road traffic noise map by compared measured noise levels with predicted noise levels from each road traffic noise map for Site A, B and C.

  • PDF

Study on Application of Topographic Position Index for Prediction of the Landslide Occurrence (산사태 발생지 예측을 위한 Topographic Position Index의 적용성 연구)

  • Woo, Choong-Shik;Lee, Chang-Woo;Jeong, Yongho
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.11 no.2
    • /
    • pp.1-9
    • /
    • 2008
  • The objective of the study is 10 know the relation of landslide occurrence with using TPI (Topographic Position Index) in the Pyungchang County. Total 659 landslide scars were detected from aerial photographs. To analyze TPI, 100m SN (Small-Neighborhood) TPI map, 500m LN (Large-Neighborhood) TPI map, and slope map were generated from the DEM (Digital Elevation Model) data which are made from 1 : 5,000 digital topographic map. 10 classes clustered by regular condition after overlapping each TPI maps and slope map. Through this process, we could make landform classification map. Because it is only to classify landform, 7 classes were finally regrouped by the slope angle information of landslide occurrence detected from aerial photography analysis. The accuracy of reclassified map is about 46%.

Verification of Ground Subsidence Risk Map Based on Underground Cavity Data Using DNN Technique (DNN 기법을 활용한 지하공동 데이터기반의 지반침하 위험 지도 작성)

  • Han Eung Kim;Chang Hun Kim;Tae Geon Kim;Jeong Jun Park
    • Journal of the Society of Disaster Information
    • /
    • v.19 no.2
    • /
    • pp.334-343
    • /
    • 2023
  • Purpose: In this study, the cavity data found through ground cavity exploration was combined with underground facilities to derive a correlation, and the ground subsidence prediction map was verified based on the AI algorithm. Method: The study was conducted in three stages. The stage of data investigation and big data collection related to risk assessment. Data pre-processing steps for AI analysis. And it is the step of verifying the ground subsidence risk prediction map using the AI algorithm. Result: By analyzing the ground subsidence risk prediction map prepared, it was possible to confirm the distribution of risk grades in three stages of emergency, priority, and general for Busanjin-gu and Saha-gu. In addition, by arranging the predicted ground subsidence risk ratings for each section of the road route, it was confirmed that 3 out of 61 sections in Busanjin-gu and 7 out of 68 sections in Sahagu included roads with emergency ratings. Conclusion: Based on the verified ground subsidence risk prediction map, it is possible to provide citizens with a safe road environment by setting the exploration section according to the risk level and conducting investigation.