• 제목/요약/키워드: Prediction error compensation

검색결과 62건 처리시간 0.05초

HCBKA 기반 오차 보정형 TSK 퍼지 예측시스템 설계 (Design of HCBKA-Based TSK Fuzzy Prediction System with Error Compensation)

  • 방영근;이철희
    • 전기학회논문지
    • /
    • 제59권6호
    • /
    • pp.1159-1166
    • /
    • 2010
  • To improve prediction quality of a nonlinear prediction system, the system's capability for uncertainty of nonlinear data should be satisfactory. This paper presents a TSK fuzzy prediction system that can consider and deal with the uncertainty of nonlinear data sufficiently. In the design procedures of the proposed system, HCBKA(Hierarchical Correlationship-Based K-means clustering Algorithm) was used to generate the accurate fuzzy rule base that can control output according to input efficiently, and the first-order difference method was applied to reflect various characteristics of the nonlinear data. Also, multiple prediction systems were designed to analyze the prediction tendencies of each difference data generated by the difference method. In addition, to enhance the prediction quality of the proposed system, an error compensation method was proposed and it compensated the prediction error of the systems suitably. Finally, the prediction performance of the proposed system was verified by simulating two typical time series examples.

복합지형에 대한 WAsP의 풍속 예측성 평가 (Wind Speed Prediction using WAsP for Complex Terrain)

  • 윤광용;유능수;백인수
    • 산업기술연구
    • /
    • 제28권B호
    • /
    • pp.199-207
    • /
    • 2008
  • A linear wind prediction program, WAsP, was employed to predict wind speed at two different sites located in complex terrain in South Korea. The reference data obtained at locations more than 7 kilometers away from the prediction sites were used for prediction. The predictions from the linear model were compared with the measured data at the two prediction sites. Two compensation methods such as a self-prediction error method and a delta ruggedness index (RIX) method were used to improve the wind speed prediction from WAsP and showed a good possibility. The wind speed prediction errors reached within 3.5 % with the self prediction error method, and within 10% with the delta RIX method. The self prediction error method can be used as a compensation method to reduce the wind speed prediction error in WAsP.

  • PDF

WAsP을 이용한 복잡지형의 풍속 예측 및 보정 (Wind Speed Prediction using WAsP for Complex Terrain)

  • 윤광용;백인수;유능수
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2008년도 추계학술대회 논문집
    • /
    • pp.268-273
    • /
    • 2008
  • A linear wind prediction program, WAsP, was employed to predict wind speed at two different sites located in complex terrain in South Korea. The reference data obtained at locations more than 7 kilometers away from the prediction sites were used for prediction. The predictions from the linear model were compared with the measured data at the two prediction sites. Two compensation methods such as a self-prediction error method and a delta ruggedness index (RIX) method were used to improve the wind speed prediction from WAsP and showed a good possibility. The wind speed prediction errors reached within 3.5 % with the self prediction error method, and within 10% with the delta RIX method. The self prediction error method can be used as a compensation method to reduce the wind speed prediction error in WAsP.

  • PDF

Short-term Electrical Load Forecasting Using Neuro-Fuzzy Model with Error Compensation

  • Wang, Bo-Hyeun
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제9권4호
    • /
    • pp.327-332
    • /
    • 2009
  • This paper proposes a method to improve the accuracy of a short-term electrical load forecasting (STLF) system based on neuro-fuzzy models. The proposed method compensates load forecasts based on the error obtained during the previous prediction. The basic idea behind this approach is that the error of the current prediction is highly correlated with that of the previous prediction. This simple compensation scheme using error information drastically improves the performance of the STLF based on neuro-fuzzy models. The viability of the proposed method is demonstrated through the simulation studies performed on the load data collected by Korea Electric Power Corporation (KEPCO) in 1996 and 1997.

Adaptive Compensation Method Using the Prediction Algorithm for the Doppler Frequency Shift in the LEO Mobile Satellite Communication System

  • You, Moon-Hee;Lee, Seong-Pal;Han, Young-Yearl
    • ETRI Journal
    • /
    • 제22권4호
    • /
    • pp.32-39
    • /
    • 2000
  • In low earth orbit (LEO) satellite communication systems, more severe phase distortion due to Doppler shift is frequently detected in the received signal than in cases of geostationary earth orbit (GEO) satellite systems or terrestrial mobile systems. Therefore, an estimation of Doppler shift would be one of the most important factors to enhance performance of LEO satellite communication system. In this paper, a new adaptive Doppler compensation scheme using location information of a user terminal and satellite, as well as a weighting factor for the reduction of prediction error is proposed. The prediction performance of the proposed scheme is simulated in terms of the prediction accuracy and the cumulative density function of the prediction error, with considering the offset variation range of the initial input parameters in LEO satellite system. The simulation results showed that the proposed adaptive compensation algorithm has the better performance accuracy than Ali's method. From the simulation results, it is concluded the adaptive compensation algorithm is the most applicable method that can be applied to LEO satellite systems of a range of altitude between 1,000 km and 2,000 km for the general error tolerance level, M = 250 Hz.

  • PDF

스미스 예측기와 그레이 예측 방법을 적용한 시간 지연이 있는 비 가시 환경에서의 원격로봇제어 (Teleoperation by using Smith prediction and Grey prediction with a Time-delay in a Non-visible Environment)

  • 정재훈;김덕수;이장명
    • 로봇학회논문지
    • /
    • 제11권4호
    • /
    • pp.277-284
    • /
    • 2016
  • A new prediction scheme has been proposed for the robust teleoperation in a non-visible environment. The positioning error caused by the time delay in the non-visible environment has been compensated for by the Smith predictor and the sensory data have been estimated by the Grey model. The Smith predictor is effective for the compensation of the positioning error caused by the time delay with a precise system model. Therefore the dynamic model of a mobile robot has been used in this research. To minimize the unstable and erroneous states caused by the time delay, the estimated sensor data have been sent to the operator. Through simulations, the possibility of compensating the errors caused by the time delay has been verified using the Smith predictor. Also the estimation reliability of the measurement data has been demonstrated. Robust teleoperations in a non-visible environment have been performed with a mobile robot to avoid the obstacles effective to go to the target position by the proposed prediction scheme which combines the Smith predictor and the Grey model. Even though the human operator is involved in the teleoperation loop, the compensation effects have been clearly demonstrated.

Development of Thermal Error Model with Minimum Number of Variables Using Fuzzy Logic Strategy

  • 이진현;이재하;양성한
    • Journal of Mechanical Science and Technology
    • /
    • 제15권11호
    • /
    • pp.1482-1489
    • /
    • 2001
  • Thermally-induced errors originating from machine tool errors have received significant attention recently because high speed and precise machining is now the principal trend in manufacturing proce sses using CNC machine tools. Since the thermal error model is generally a function of temperature, the thermal error compensation system contains temperature sensors with the same number of temperature variables. The minimization of the number of variables in the thermal error model can affect the economical efficiency and the possibility of unexpected sensor fault in a error compensation system. This paper presents a thermal error model with minimum number of variables using a fuzzy logic strategy. The proposed method using a fuzzy logic strategy does not require any information about the characteristics of the plant contrary to numerical analysis techniques, but the developed thermal error model guarantees good prediction performance. The proposed modeling method can also be applied to any type of CNC machine tool if a combination of the possible input variables is determined because the error model parameters are only calculated mathematically-based on the number of temperature variables.

  • PDF

위성 통신 링크에서 강우 감쇠 보상을 위한 신호 레벨 예측기법 (A Signal-Level Prediction Scheme for Rain-Attenuation Compensation in Satellite Communication Linkes)

  • 임광재;황정환;김수영;이수인
    • 한국통신학회논문지
    • /
    • 제25권6A호
    • /
    • pp.782-793
    • /
    • 2000
  • 본 논문은 10GHz이상의 주파수 대역을 사용하는 위성 통신 링크에서 강우에 의해 감쇠된 신호 레벨을 동적으로 예측하기 위한 비교적 간단한 예측 기법을 제시한다. 예측 기법은 이산시간 저역 통과 필터링, 기울기에 근거한 예측, 평균 오차 보정, 고정 및 가변 혼합 예측 여유 할당의 4가지 기능 블록을 갖는다. Ku 대역의 측정 데이터로부터 주파수 스케일링에 의해 얻어진 Ka 대역 강우 감쇠 데이터를 이용하여 시뮬레이션을 수행하였다. 평균 오차 보정을 갖는 기울기 예측 기법은 1dB 이하의 표준 편차를 가지며, 평균 오차 보정에 의해 약 1.5~2.5 배의 예측 오차 감소를 보인다. 요구되는 평균 여유 면에서, 혼합 예측 여유 할당은 고정 여유 방법과 가변 여유 방법에 비해 더 적은 평균 여유를 요구한다.

  • PDF

측면가공에서 마이크로 엔드밀의 공구변형에 의한 절삭가공오차 보상에 관한 연구 (A Study of Machining Error Compensation for Tool Deflection in Side-Cutting Processes using Micro End-mill)

  • 전두성;서태일;윤길상
    • 한국공작기계학회논문집
    • /
    • 제17권2호
    • /
    • pp.128-134
    • /
    • 2008
  • This paper presents a machining error compensation methodology due to deflection of micro cutting tools in side cutting processes. Generally in order to compensate for tool deflection errors it is necessary to carry out a series of simulations, cutting force prediction, tool deflection estimation and compensation method. These can induce numerous calculations and expensive costs. This study proposes an improved approach which can compensate for machining errors without simulation processes concerning prediction of cutting force and tool deflection. Based on SEM images of test cutting specimens, polynomial relationships between machining errors and corrected tool positions were induced. Taking into account changes of cutting conditions caused by tool position variation, an iterative algorithm was applied in order to determine corrected tool position. Experimental works were carried out to validate the proposed approach. Comparing machining errors of nominal cutting with those of compensated cutting, overall machining errors could be remarkably reduced.

러프 집합 기반 적응 모델 선택을 갖는 다중 모델 퍼지 예측 시스템 구현과 시계열 예측 응용 (Multiple Model Fuzzy Prediction Systems with Adaptive Model Selection Based on Rough Sets and its Application to Time Series Forecasting)

  • 방영근;이철희
    • 한국지능시스템학회논문지
    • /
    • 제19권1호
    • /
    • pp.25-33
    • /
    • 2009
  • 최근 시계열 예측에 결론부에 선형식을 갖는 TS 퍼지 모델이 많이 이용되고 있는데, 이의 예측 성능은 정상성과 같은 데이터의 특성과 밀접한 관련이 있다. 그러므로 본 논문에서는 특히 비정상 시계열 예측에 매우 효과적인 새로운 예측 기법을 제안하였다. 시계열의 패턴이나 규칙성을 잘 끌어내기 위한 데이터 전처리 과정을 도입하고 다중 모델 TS 퍼지 예측기를 구성한 뒤, 러프집합을 이용한 적응 모델 선택 기법에 의해 입력 데이터의 특성에 따라 가변적으로 적합한 예측 모델을 선택하여 시계열 예측이 수행되도록 하였다. 마지막으로 예측 오차를 감소시키기 위하여 오차 보정 메커니즘을 추가함으로써 예측 성능을 더욱 향상시켰다. 시뮬레이션을 통해 제안된 기법의 성능을 검증하였다. 제안된 기법은 예측 모델 구현과 예측 수행 과정에서 시계열 데이터의 특성들을 잘 반영할 수 있으므로 불확실성과 비정상성을 갖는 시계열의 예측에 매우 효과적으로 이용될 수 있을 것이다.