• Title/Summary/Keyword: Prediction Uncertainty

Search Result 430, Processing Time 0.024 seconds

Permeability Prediction of Rock Mass Using the Artifical Neural Networks (인공신경 망을 이용한 암반의 투수계수 예측)

  • Lee, In-Mo;Jo, Gye-Chun;Lee, Jeong-Hak
    • Geotechnical Engineering
    • /
    • v.13 no.2
    • /
    • pp.77-90
    • /
    • 1997
  • A resonable and economical method which can predict permeability of rock mass in underground is needed to overcome the uncertainty of groundwater behavior. For this par pose, one prediction method of permeability has been studied. The artificial neural networks model using error back propagation algorithm, . one of the teaching techniques, is utilized for this purpose. In order to verify the applicability of this model, in-situ permeability results are simulated. The simulation results show the potentiality of utilizing the neural networks for effective permeability prediction of rock mass.

  • PDF

Design of Multiple Model Fuzzy Predictors using Data Preprocessing and its Application (데이터 전처리를 이용한 다중 모델 퍼지 예측기의 설계 및 응용)

  • Bang, Young-Keun;Lee, Chul-Heui
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.1
    • /
    • pp.173-180
    • /
    • 2009
  • It is difficult to predict non-stationary or chaotic time series which includes the drift and/or the non-linearity as well as uncertainty. To solve it, we propose an effective prediction method which adopts data preprocessing and multiple model TS fuzzy predictors combined with model selection mechanism. In data preprocessing procedure, the candidates of the optimal difference interval are determined based on the correlation analysis, and corresponding difference data sets are generated in order to use them as predictor input instead of the original ones because the difference data can stabilize the statistical characteristics of those time series and better reveals their implicit properties. Then, TS fuzzy predictors are constructed for multiple model bank, where k-means clustering algorithm is used for fuzzy partition of input space, and the least squares method is applied to parameter identification of fuzzy rules. Among the predictors in the model bank, the one which best minimizes the performance index is selected, and it is used for prediction thereafter. Finally, the error compensation procedure based on correlation analysis is added to improve the prediction accuracy. Some computer simulations are performed to verify the effectiveness of the proposed method.

Copula entropy and information diffusion theory-based new prediction method for high dam monitoring

  • Zheng, Dongjian;Li, Xiaoqi;Yang, Meng;Su, Huaizhi;Gu, Chongshi
    • Earthquakes and Structures
    • /
    • v.14 no.2
    • /
    • pp.143-153
    • /
    • 2018
  • Correlation among different factors must be considered for selection of influencing factors in safety monitoring of high dam including positive correlation of variables. Therefore, a new factor selection method was constructed based on Copula entropy and mutual information theory, which was deduced and optimized. Considering the small sample size in high dam monitoring and distribution of daily monitoring samples, a computing method that avoids causality of structure as much as possible is needed. The two-dimensional normal information diffusion and fuzzy reasoning of pattern recognition field are based on the weight theory, which avoids complicated causes of the studying structure. Hence, it is used to dam safety monitoring field and simplified, which increases sample information appropriately. Next, a complete system integrating high dam monitoring and uncertainty prediction method was established by combining Copula entropy theory and information diffusion theory. Finally, the proposed method was applied in seepage monitoring of Nuozhadu clay core-wall rockfill dam. Its selection of influencing factors and processing of sample data were compared with different models. Results demonstrated that the proposed method increases the prediction accuracy to some extent.

Probabilistic Evaluation on Prediction of the Strains by Single Surface Constitutive Model (확률론에 의한 Single Surface 구성모델의 변형률 예측능력 평가)

  • Jeong, Jin Seob;Song, Young Sun;Kim, Chan Kee
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.13 no.3
    • /
    • pp.163-172
    • /
    • 1993
  • A probabilistic approach for evaluation of prediction of the strains using Lade's single surface constitutive model was employed, based on first-order approximate mean and variance. Several experiments such as isotropic compression and drained triaxial compression tests were conducted to examine the variabilities of soil parameters for Lade's model. By taking into account the results of the experimental data such as mean values and standard deviations of soil parameter's, a new probabilistic approach, which explains the uncertainty of computed strains, is applied. The magnitude of the COV for each parameter and the correlation coefficient between the two parameters can be effectively used for reducing the number of the parameters for the model. It is concluded that Lade's single surface constitutive model is surperior model for the prediction of the strain, because the COV of strains is under the "0.51".

  • PDF

A Study on the Safety Prediction of Embankment Using Simple Parameter Estimation Method (물성치 추정을 통한 성토안정성 예측)

  • Park, Jong-Sung;Hong, Chang-Soo;Hwang, Dae-Jin;Seok, Jeong-Woo
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.03a
    • /
    • pp.888-895
    • /
    • 2009
  • Compaction is a process of increasing soil density using physical energy. It is intended to improve the strength and stiffness of soil. In embankment, degree of compaction affects the construction time, money, also method of soil improvement. In large scale embankment project, difficulties of embankment should change due to uncertainty of settlement. So it is very important to predict the final settlement and factor of safety induced by embankment. In many construction site, there are primarily design of high embankment using in-situ soil. Therefore numerical analyses are necessary for valid evaluation of the settlement prediction. But due to the construction cost and schedule, there were lacking in properties of soil and also limited number of in-situ test were performed. So we proposed the method that can easily estimate the proper soil parameters and suggest the proper method of numerical analysis. From this, two-dimensional finite-difference numerical analysis was conducted to investigate the settlement and factor of safety induced by embankment with various case of compaction rate and embankment height.

  • PDF

Effects of Uncertain Spatial Data Representation on Multi-source Data Fusion: A Case Study for Landslide Hazard Mapping

  • Park No-Wook;Chi Kwang-Hoon;Kwon Byung-Doo
    • Korean Journal of Remote Sensing
    • /
    • v.21 no.5
    • /
    • pp.393-404
    • /
    • 2005
  • As multi-source spatial data fusion mainly deal with various types of spatial data which are specific representations of real world with unequal reliability and incomplete knowledge, proper data representation and uncertainty analysis become more important. In relation to this problem, this paper presents and applies an advanced data representation methodology for different types of spatial data such as categorical and continuous data. To account for the uncertainties of both categorical data and continuous data, fuzzy boundary representation and smoothed kernel density estimation within a fuzzy logic framework are adopted, respectively. To investigate the effects of those data representation on final fusion results, a case study for landslide hazard mapping was carried out on multi-source spatial data sets from Jangheung, Korea. The case study results obtained from the proposed schemes were compared with the results obtained by traditional crisp boundary representation and categorized continuous data representation methods. From the case study results, the proposed scheme showed improved prediction rates than traditional methods and different representation setting resulted in the variation of prediction rates.

Machine Learning Methodology for Management of Shipbuilding Master Data

  • Jeong, Ju Hyeon;Woo, Jong Hun;Park, JungGoo
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.12 no.1
    • /
    • pp.428-439
    • /
    • 2020
  • The continuous development of information and communication technologies has resulted in an exponential increase in data. Consequently, technologies related to data analysis are growing in importance. The shipbuilding industry has high production uncertainty and variability, which has created an urgent need for data analysis techniques, such as machine learning. In particular, the industry cannot effectively respond to changes in the production-related standard time information systems, such as the basic cycle time and lead time. Improvement measures are necessary to enable the industry to respond swiftly to changes in the production environment. In this study, the lead times for fabrication, assembly of ship block, spool fabrication and painting were predicted using machine learning technology to propose a new management method for the process lead time using a master data system for the time element in the production data. Data preprocessing was performed in various ways using R and Python, which are open source programming languages, and process variables were selected considering their relationships with the lead time through correlation analysis and analysis of variables. Various machine learning, deep learning, and ensemble learning algorithms were applied to create the lead time prediction models. In addition, the applicability of the proposed machine learning methodology to standard work hour prediction was verified by evaluating the prediction models using the evaluation criteria, such as the Mean Absolute Percentage Error (MAPE) and Root Mean Squared Logarithmic Error (RMSLE).

K-Means Clustering with Deep Learning for Fingerprint Class Type Prediction

  • Mukoya, Esther;Rimiru, Richard;Kimwele, Michael;Mashava, Destine
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.3
    • /
    • pp.29-36
    • /
    • 2022
  • In deep learning classification tasks, most models frequently assume that all labels are available for the training datasets. As such strategies to learn new concepts from unlabeled datasets are scarce. In fingerprint classification tasks, most of the fingerprint datasets are labelled using the subject/individual and fingerprint datasets labelled with finger type classes are scarce. In this paper, authors have developed approaches of classifying fingerprint images using the majorly known fingerprint classes. Our study provides a flexible method to learn new classes of fingerprints. Our classifier model combines both the clustering technique and use of deep learning to cluster and hence label the fingerprint images into appropriate classes. The K means clustering strategy explores the label uncertainty and high-density regions from unlabeled data to be clustered. Using similarity index, five clusters are created. Deep learning is then used to train a model using a publicly known fingerprint dataset with known finger class types. A prediction technique is then employed to predict the classes of the clusters from the trained model. Our proposed model is better and has less computational costs in learning new classes and hence significantly saving on labelling costs of fingerprint images.

PRODUCTIVITY PREDICTION MODEL BASED ON PRODUCTIVION INFLUENCING FACTORS: FOCUSED ON FORMWORK OF RESIDENTIAL BUILDING

  • Byungki Kwon;Hyun-soo Lee;Moonseo Park;Hyunsoo Kim
    • International conference on construction engineering and project management
    • /
    • 2011.02a
    • /
    • pp.58-65
    • /
    • 2011
  • Construction Productivity is one of the most important elements in construction management. It is used in construction process scheduling and cost management, which are significant sector in construction management. It is important to make appropriate schedule and monitor how works are done within schedule. But construction project contains uncertainty and inexactitude, modifying construction schedule is being an issue to manage construction works well. Even though prediction and monitoring of productivity can be principal activity, it is hard to predict productivity with manager's experience and a standard of estimate. A large number of factors influencing productivity, such as drawing, construction method, weather, labor, material, equipment, etc. But current calculation of productivity depends on empirical probability, not consider difference of each influencing factor. In this research, the aim is to present a productivity predicting regression model of form work, which includes effectiveness of influences factors. 5 variables existed inside form work are selected by interview and site research based on literature review of existed various productivity influencing factors. The effectiveness and correlation of productivity influencing factors are analyzed by statistical approach, and it is used to make productivity regression model. The finding of this research will improves monitoring and controlling of project schedule in construction phase.

  • PDF

A long-term tunnel settlement prediction model based on BO-GPBE with SHM data

  • Yang Ding;Yu-Jun Wei;Pei-Sen Xi;Peng-Peng Ang;Zhen Han
    • Smart Structures and Systems
    • /
    • v.33 no.1
    • /
    • pp.17-26
    • /
    • 2024
  • The new metro crossing the existing metro will cause the settlement or floating of the existing structures, which will have safety problems for the operation of the existing metro and the construction of the new metro. Therefore, it is necessary to monitor and predict the settlement of the existing metro caused by the construction of the new metro in real time. Considering the complexity and uncertainty of metro settlement, a Gaussian Prior Bayesian Emulator (GPBE) probability prediction model based on Bayesian optimization (BO) is proposed, that is, BO-GPBE. Firstly, the settlement monitoring data are analyzed to get the influence of the new metro on the settlement of the existing metro. Then, five different acquisition functions, that is, expected improvement (EI), expected improvement per second (EIPS), expected improvement per second plus (EIPSP), lower confidence bound (LCB), probability of improvement (PI) are selected to construct BO model, and then BO-GPBE model is established. Finally, three years settlement monitoring data were collected by structural health monitoring (SHM) system installed on Nanjing Metro Line 10 are employed to demonstrate the effectiveness of BO-GPBE for forecasting the settlement.