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a b s t r a c t

The continuous development of information and communication technologies has resulted in an
exponential increase in data. Consequently, technologies related to data analysis are growing in
importance. The shipbuilding industry has high production uncertainty and variability, which has
created an urgent need for data analysis techniques, such as machine learning. In particular, the industry
cannot effectively respond to changes in the production-related standard time information systems, such
as the basic cycle time and lead time. Improvement measures are necessary to enable the industry to
respond swiftly to changes in the production environment. In this study, the lead times for fabrication,
assembly of ship block, spool fabrication and painting were predicted using machine learning technology
to propose a new management method for the process lead time using a master data system for the time
element in the production data. Data preprocessing was performed in various ways using R and Python,
which are open source programming languages, and process variables were selected considering their
relationships with the lead time through correlation analysis and analysis of variables. Various machine
learning, deep learning, and ensemble learning algorithms were applied to create the lead time pre-
diction models. In addition, the applicability of the proposed machine learning methodology to standard
work hour prediction was verified by evaluating the prediction models using the evaluation criteria, such
as the Mean Absolute Percentage Error (MAPE) and Root Mean Squared Logarithmic Error (RMSLE).

© 2020 Society of Naval Architects of Korea. Production and hosting by Elsevier B.V. This is an open
access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

1.1. Background

The widespread growth of the information society has resulted
in an exponential increase in data, which has led to the rapid
development of big data technology for systematic collection,
storage, and analysis of large volumes of data that are difficult to
collect, store, and analyze using the existing methods or tools. In
the era of the fourth industrial revolution, there have been
increasing attempts to create new added values through big data
technology, mainly in industries.

Big data has been applied to the shipbuilding industry in various

ways. Studies on predicting the types of ships through the analysis
of sales data from the international market (Lee, 2017) and studies
on predicting quantity through the analysis of BOM and design
information can be referred to as representative studies (Oh et al.,
2018). In the production management area, studies on standard
work hours and standard lead time, which are the concepts
addressed in this study, have been conducted (Ham, 2016).

In the existingmethod for standardwork hourmanagement, the
quantity is calculated from the product information and the work
hours and lead time are analyzed by adding the existing standard
unit work hours to the calculated quantity. It can be said that the
method is based on causal relation. This method, however, requires
further research on quantity calculation or standard unit work
hours owing to the complexity of products and the existence of
various variables in the field work despite the research being
conducted over an extended period.

The big data analysis methodology, on the other hand, is an
analysis technique based on statistics, which analyzes only the
correlations between the data expressed in numbers or letters
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regardless of the products or process technologies (Lee et al.,
2014a,b). Therefore, it is expected that a standard work hour pre-
diction model for the target work can be derived through machine
learning of the relations between relevant variables and actual (or
planned) data if the big data analysis methodology is applied to the
standard work hours.

1.2. Current problems

The production time of most general manufacturing industries
(mechanical, aviation, electronics, etc.), which are mainly operated
by mass production systems, has a high standardization rate. In the
case of workers, standardized motion analysis methods such as
MTM (Methods-Time Measurement) and MODAPTS (MODular
Arrangement of Predetermined Time Standards) are used. In the
case of facilities, standard operation sheet analysis is used to
standardize the working time and reflect them in the process
design. In the general manufacturing industry, the standardization
of such working time is possible because the same (or similar)
product is produced repeatedly. Except, the same applies.

However, the shipbuilding is very difficult to standardize the
working time because the specifications of the intermediate
product (hull block, design, member, etc.) constituting the final
product as well as the final product (ship) are all different.

Once the ship type is determined to be built at the shipyard, the
production plan is usually based on the previous vessel's plan data
rather than the standard of estimate information on production
time. In principle, the amount of work should be calculated from
the product information of the ordered vessel and theworking time
should be calculated in consideration of the standard of estimate.
However, due to the wide variety and quantity of vessels, this
principle is notwell followed, so the accuracy rate of the production
plan is low compared to the other manufacturing sectors.

In this study, we propose amodel that can predict more accurate
working time through supervised learning on past production re-
cord as a solution for the problem of production planning.

2. Objectives

In this study, a model for predicting the standard time data of a
shipyard was created using the big data analysis methodology. The
scenarios related to shipbuilding production were defined by col-
lecting the performance data of shipyards on fabrication, assembly,
and procurement, and were analyzed using the learning algorithms
in R and Python.

Machine learning, deep learning, and ensemble learning algo-
rithms were applied to the fabrication, assembly, and procurement
data related to shipbuilding in this study. Lead time prediction
models were created based on analytical cases by applying various
learning algorithms. The reason for applying various learning al-
gorithms is to investigate whether a specific algorithm is good for
all process data or specific algorithms guarantee high prediction
accuracy for a certain process type, because the prediction accuracy
of the learning model can vary depending on the characteristics of
the production data. . The prediction models were evaluated by
comparing the lead times obtained from themodels with the actual
lead time.

3. Related studies

Jo and Kang (2016) classified the big data applicable to the
manufacturing industry under product development,
manufacturing process, sales and marketing, and warranty service,
and then presented application examples for each field. In the text
mining case for improving the efficiency of the automotive parts

design process in the product development area, they showed that
the time and effort required to identify major problems could be
reduced by analyzing the information included in the design veri-
fication test.

Jung and Sim (2014) attempted to reduce the welding cost by
analyzing the work patterns of welders based on the welding data.
To this end, they examined the patterns of power consumption and
the wire length consumed by applying the algorithm in R and
regression analysis to a large number of welding work pattern
variables.

Ham (2016) and Ham et al. (2016) conducted a research on
improving the level of procurement management by predicting the
lead time for spools, which are outfittings that cause significant
delays in post tasks, from the manufacturing process to the
installation process. In the study, the lead time was defined by
dividing the supply chain of the piping process into six processes,
and multiple linear regression analysis and partial least squares
regression analysis were conducted. However, the error rate of the
lead time for each process was found to be large because of insuf-
ficient data preprocessing.

Hur et al. (2015) analyzed the effort data of the ship design and
production processes to predict the effort in shipyards. Prediction
models were created by defining variables related to effort and
using multiple linear regression analysis as well as decision tree.
However, the method suffered from limitations related to the
collection of long-term data considering that shipbuilding in
shipyards takes one to two years on average, and the consideration
of external factors other than the workspace was inadequate.

Lee et al. (2014a,b) applied the text mining method to predict
various kinds of defects that could occur during the construction of
marine structures. They extracted significant knowledge helpful for
the manufacturing process by conducting defect trend analysis and
related defect analysis through the analysis of text log data and
visualization of results.

National Information Society Agency (NIA) (2016) pushed for-
ward a project for developing a big data cloud service for analyzing
the shipyard manufacturing process as part of the big data pilot
project. The project attempted to improve the work efficiency by
analyzing process delays and loads. The process status and delay
factors were identified by examining themanufacturing process big
data based on process mining.

Kim et al. (2016) proposed a big data platform based on Hadoop,
a big data distributed processing technology. They studied the
applicability of big data to marine structure development by
applying the proposed platform to the estimation of the weight of
the offshore plant superstructure. However, the data for analysis
were not sufficient owing to security concerns of shipyards, and the
testing of various analysis algorithms was inadequate because only
simple linear regression analysis was applied.

Currently, big data analysis research continues to increase in the
shipbuilding and marine industries, but no research case has been
found in the field of lead time related to shipyard production. There
are also cases where technologies related to big data have been
acquired through various studies, but there are no applicable ob-
jects (actual shipyard data). Therefore, in this study, we intend to
predict the lead time of production by applying machine learning
methodology to actual shipyard data.

4. Algorithms used for analysis

In this study, machine learning, deep learning, and ensemble
learning were used as analytic algorithms. Deep learning and
ensemble learning are included in one of the machine learning
methodologies, but we will use them separately for convenience to
show the process of expanding the analytic algorithm.
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4.1. Machine learning algorithm

Machine learning, an application of artificial intelligence, can be
referred to as a technology for constructing ideal learning models
using various probabilities, combinatorics, mathematical optimi-
zation techniques, statistics, and algorithms (Lee et al., 2014a,b). As
the purpose of machine learning is to create models using data,
selecting appropriate input data as well as selecting an algorithm
suitable for a problem is important. Machine learning algorithms
are selected based on training data and divided into supervised
learning, for which labels are included in the training data, and
unsupervised learning, for which no label is included in the training
data (Fig. 1).

The purpose of this study is to develop the prediction models for
improving the lead times, which are the master data. Therefore, the
process data of shipyards were defined as input values and the lead
times to be predicted were defined as output values. Thus, the
machine learning algorithms of this study were limited to super-
vised learning algorithms. Among such supervised learning algo-
rithms, multiple regression analysis, single layer perceptron, and
decision tree, which are known to be suitable for numerical pre-
diction, were used.

4.1.1. Multiple regression analysis
The most basic algorithm among the numerical prediction al-

gorithms is regression analysis. Regression analysis, which is a
statistical analysis method to identify the relationships between
variables, is used to predict the values of dependent variables ac-
cording to the values of independent variables. In this study, mul-
tiple regression analysis is used to identify the relationship
between one dependent variable and several independent
variables.

4.1.2. Single layer perceptron
Single layer perceptron is and early artificial neural network,

which consists of sending values and outputting values. It receives
multiple signals and outputs one signals, which seems similar to
the neuron sending out an electrical signal to transmit information.
The single layer perceptron receives the signal as an input and
forwards the information of 1 or 0 and gives unique weight to each
of the multiple input signals.

4.1.3. Decision tree
Decision tree, an algorithm based on inductive inference, is one

of the most commonly used supervised learning models in the
field. Because the analytical process is expressed using a tree
structure, researchers can easily understand and explain the anal-
ysis process. Although the decision tree is a typical classification
model, it is classified as a classification tree if the target variable is
categorical and a regression tree if the target variable is continuous.
In this study, the analysis is performed as a regression tree because
the target variable is lead time which is a continuous variable.

4.2. Deep learning algorithm

In the existing machine learning process, people frequently
designate definitions in advance or human interaction is involved
when the computer extracts features from the training data, which
results in many errors. Moreover, the approach of using multiple
neural layers has not been utilized owing to problems, such as
nonlinearity, limitations on the number of weights due to the
number of layers, and overfitting. Despite such problems, deep
learning technology is being widely used in artificial intelligence
because improved computational performance of computers and
the development of algorithms have demonstrated the usefulness
of multi-layered neural networks (Kim et al., 2016).

4.2.1. Multi-layer perceptron
Multi-layer perceptron was proposed as a way to overcome the

limitations of the single layer perceptron that non-linearly sepa-
rated data were not available for learning. It is possible to learn
about data that is non-linearly separated by having one or more
hidden layers between the input and output layers. The input layer
plays the role of inputting the prediction variables. The hidden layer
receives the input values from input nodes, calculates the weights,
applies the values to the activation function, and delivers the re-
sults to the output layer. In this study, multi-layer perceptron was
used for analysis to ensure better performance than single layer
perceptron (Fig. 2).

4.3. Ensemble learning algorithm

Ensemble learning is a method of learning a new hypothesis by
learning several single classifiers and combining their predictions.
The purpose of ensemble learning is to obtain a predicted value

Fig. 1. Algorithm classification of machine learning.
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with higher reliability than that obtained with a single classifier by
combining the results of various classifiers (Lee and Yang, 2008). To
obtain excellent results from ensemble learning, it is necessary to
represent the classifiers using various algorithms or to randomly
divide the training dataset and train each classifier differently even
though the same algorithm is used.

Ensemble learning is a classified as bagging, boosting and
stacking. Bagging uses one learning algorithm. And this is a method
of allowing duplication in training data sets to learn different
learning models and make decisions by aggregating each learning
result. Boosting is the same as bagging, but it is characterized by a
higher weight on the wrong answer and a lower weight on the
correct answer, thereby focusing more on the wrong answer.
Stacking is an algorithm that combines different learning models.
As a result, the advantages of each algorithm are taken and the
weaknesses of each algorithm are compensated. In this study,
random forest corresponding to bagging is used for analysis.

4.3.1. Random forest algorithm
In this study, the random forest algorithm was used for

ensemble learning. Random forest is an algorithm obtained by
improving the decision trees of machine learning. It creates amodel

by combining multiple decision trees. The concept of the Random
forest algorithm is illustrated in Fig. 3. Random forest selects vari-
ables by using the baggingmethod, inwhich sampling is performed
by allowing duplication of the training dataset, for the construction
of each decision tree. Each unit model is significantly different
because they have different independent variables, and it is
possible to obtain a predicted value with higher reliability than that
possible with a single model by combining the prediction results of
each model. Unlike the existing ensemble model, random forest is
stable because it maximizes the benefits of ensemble learning and
improves the prediction and classification accuracy by applying
randomness to variables as well as the observed values. Random
forest constructs the final ensemble learning model, C*ðxÞ, by
combining B decision tree models. The method of constructing the
final learning model is different depending on the analysis target.

In the regression model, the method for constructing the final
learning model involves the calculation of the average of the values
predicted by each decision tree, as follows.

C*ðxÞ¼
XB

b¼1

CbðxÞ
�
B

Fig. 3. Concept of random forest algorithm.

Fig. 2. Concept of multi-layer perceptron.
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In the classificationmodel, the method for constructing the final
learning model involves identifying the most selected class by
voting.

C*ðxÞ¼ argmaxy
XB

b¼1

I½CbðxÞ¼ y�

5. Data analysis process

The data analysis process comprises four steps: data collection,
data processing, model construction, and model performance
validation (Fig. 4). In the data collection step, the data pertaining to
a shipyard for which the production lead time is to be predicted are
collected for each process and various data processing techniques
for constructing a model are applied. In the next step, prediction
models are created by classifying the data required for creating the
prediction models and by applying learning algorithms. Finally, the
performance of each predictionmodel is validated using the criteria
for evaluation of the result data.

5.1. Data collection

In the data collection step, data are collected according to the
analysis purpose. The collected shipyard data are classified based
on three process types, namely, cutting process, erection process,
and spool procurement process, as shown in Table 1. In the case of
the spool procurement process, the lead times for spool fabrication
and painting, in which the spool process variables have signifi-
cance, were targeted in this study even though there were various
processes between spool fabrication and installation.

Cutting process performance data have been stored for about six
years. This data has relatively fewer variables managed together.
The collected data is 63,989rows and consists of 7 independent
variables (3 continuous variables and 4 categorical variables) and a
dependent variable corresponding to lead time. Erection process
performance data have been stored for about three years. Contin-
uous variables in the block were extracted by mapping work target
and block information. The collected data is 22,758rows and con-
sists of 15 independent variables (8 continuous variables and 7

categorical variables) and a dependent variable corresponding to
lead time. Finally, spool procurement performance data are about
spools installed in one vessel. The supply chain of the spools is
constructed through the process from making to installation. And
lead time is controlled for each process, but in this study, the lead
time of the making and painting process is predicted. The collected
data is 32,039rows and consists of 19 independent variables (6
continuous variables and 13 categorical variables) and a dependent
variable corresponding to lead time.

5.2. Data processing

In the data processing step, the collected data are defined,
searched, modified, and preprocessed. Data analysis involves the
tasks of selecting variables to be applied to the algorithms and
processing erroneous data.

First, independent and dependent variables are defined for the
algorithm. As different analysis techniques can be applied
depending on the type and number of variables, independent var-
iables having a significant relationship with the lead time, which is
a dependent variable, are selected from among the defined process
variables by conducting correlation analysis between continuous
variables and the analysis of variables between categorical vari-
ables. Next, errors in the analysis results must be prevented in
advance by examining each variable and removing outliers or
missing values. Missing values in the data corresponding to the
selected variables are removed whereas the interquartile range
(IQR) rule and Cook's distance are used to remove the outliers.

5.2.1. IQR rule
The IQR rule can be explained by visualizing the distribution of

data using a box plot, as shown in Fig. 5. The box plot summarizes
the degree of variation of data using the maximum value, upper
quartile, median value, lower quartile, and minimum value. IQR is
the value obtained by subtracting the lower quartile from the upper
quartile. The IQR rule determines the values that exceed the range
between the lower quartile e IQR � 1.5 and the upper
quartileþ IQR� 1.5 as outliers. In this study, outliers were removed
by applying the IQR rule to the independent and dependent vari-
ables, which were continuous variables.

5.2.2. Cook's distance
In regression analysis, values with large leverages and residuals

are referred to as outliers. Cook's distance is a criterion for viewing
the leverage and residual at the same time. The leverage is a value
that represents the influence of the actual result value y on the
predicted value by. For the influence matrix H, by ¼ Hy holds and the
leverage is mathematically defined as the diagonal component hii
of the influence matrix H. The residual represents the difference
between the value estimated from the regression equation of the

Fig. 4. Process of data analysis.

Table 1
Data collection.

Analytical data Prediction target

Cutting process performance data Lead time for cutting
Erection process performance data Lead time for erection process
Spool procurement performance data Lead times for spool fabrication and

painting
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sample and the actual value. Scaled standardized residuals ri must
be used to have the same standard deviation.

Cook's distance is expressed as follows.

Di ¼
ri2

RSS

"
hii

ð1� hiiÞ2
#

Below is the criterion for determining Cook's distance as an
outlier. N is the number of data and K is the sum of leverages.

Di >
4

N � K � 1

In this study, outliers were removed by applying Cook's distance
to the lead time, which is a dependent variable.

5.3. Model construction

In this step, the training data for constructing the prediction
models and the evaluation data for evaluating the prediction
models are classified and the learning algorithms are applied. In
general, the learning and evaluation data are classified at a ratio of
approximately 7:3. The process data that underwent the data
processing step are classified and a learning algorithm is applied to
the training data. In addition, the prediction results of the finally
created learning model are compared with the evaluation data.

5.4. Model performance validation

In the model performance validation step, the performance of
each predictionmodel is validated using the evaluation criteria. The
following evaluation criteria were used to calculate the error be-
tween the predicted value and the performance value of the actual
data as well as determine the accuracy of the predicted value
quantitatively (Table 2.

The mean absolute error (MAE) represents the average of the
absolute errors between the predicted values and the actual values.
The mean absolute percentage error (MAPE) converts the differ-
ence between the predicted value and the actual value into a per-
centage. The root mean square error (RMSE) is the square root of
the average of the squared residuals, and it is usually expressed as
precision. Finally, the root mean squared logarithmic error (RMSLE)
is the log value of the average of the residuals. Prediction errors
may occur in areas with large outliers as well as in areas with small

outliers. RMSLE calculates an error by assigning penalties to items
with underestimated outliers rather than to items with over-
estimated outliers.

Since the four criteria used in this study are relative evaluation
criteria for comparing one value with predicted values by various
algorithms, it is difficult to present specific criteria that are
commonly applied to all data. Therefore, the learning model with
the smallest difference between actual lead time and predicted lead
time was considered to have relatively good predictive perfor-
mance. In this study, it was determined that MAPE was the most
intuitive way to identify the effect of error on the data. Therefore,
MAPE was considered first in the model performance validation
step.

6. Data analysis for predicting the shipbuilding production
lead time

In this study, production process data were collected from
shipyards to apply to various learning algorithms, and the data

Table 2
Evaluation criteria.

Evaluation Criteria Equation

MAE jyi � byi j
MAPE 100

n

Xn

i¼1

jðyi � byi Þ =yij

RMSE
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½P
n

i¼1
ðyi � byi Þ2�=n

s

RMSLE
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pn
i¼1

ðlogð byi þ 1Þ � logðyi þ 1ÞÞ2=n
s

Table 3
Results of machine learning (1).

Case Regression
Analysis

Artificial Neural
Network

Decision tree

1 2 1 2 1 2

MAE 13.47 6.29 12.73 6.16 11.23 5.37
MAPE 167.6% 102.6% 156.8% 101.4% 128.2% 89.3%
RMSE 22.06 8.16 21.39 8.01 19.73 7.41
RMSLE 88.6% 65.9% 84.5% 64.5% 75.3% 60.7%

Table 4
Results of machine learning (2).

Case Regression
Analysis

Artificial Neural
Network

Decision tree

1 2 1 2 1 2

MAE 13.07 9.96 13.98 8.98 10.19 7.76
MAPE 352.0% 306.1% 391.5% 225.5% 198.0% 182.0%
RMSE 19.62 12.26 20.28 11.76 17.37 10.83
RMSLE 116.2% 107.0% 123.1% 93.6% 88.0% 82.3%

Table 5
Results of machine learning (3).

Case Regression
Analysis

Artificial Neural
Network

Decision tree

1 2 1 2 1 2

MAE 10.31 6.76 10.97 6.95 9.67 6.26
MAPE 36.1% 29.9% 40.7% 30.8% 32.5% 27.2%
RMSE 22.54 8.55 23.44 8.90 22.45 8.13
RMSLE 39.7% 32.4% 43.1% 33.4% 36.4% 30.4%

Fig. 5. Visualized IQR rule.
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were analyzed according to the requirements of shipbuilding pro-
duction management to define various scenarios. Three cases are
presented in this study: the lead time for cutting, the lead time for

block erection, and the lead time for spool procurement in
shipyards.

Fig. 6. Independent variables (1).

Fig. 7. Independent variables (2).
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6.1. Prediction of the lead time for cutting

The first case analyzed in this study is the prediction of the lead
time for the cutting of steel using the performance of the cutting
process as the training data. Various elements are considered in the
planning stage of the cutting process in shipyards. Specifically,
seven independent variables were identified and the lead time was
defined as a dependent variable by additionally considering the
external factors of the process during the analysis of the perfor-
mance data.

Correlation analysis and the analysis of variables were con-
ducted to analyze the correlations between the defined indepen-
dent variables and the lead time. Among the first selected variables
though interviews with field workers, precipitation was excluded
from the independent variables because the correlation coefficient
was greater than the reference value of 0.65 as a result of the cor-
relation analysis.

Thus, the analysis was conducted using the six independent
variables shown in Fig. 6. Moreover, missing values were simply
removed, and outliers were checked and removed by applying the
IQR rule and Cook's distance.

6.2. Prediction of the lead time for block erection

The second case is the prediction of the lead time for the erec-
tion process of the ship block. The ship block has various data, such
as the block code, type, size, and weight. Therefore, it was used as
the input data to define 15 independent variables, and the lead time
was defined as a dependent variable.

As most of the correlations between the continuous variables
were high in the correlation analysis, the independent variables
were reduced to decrease the influence of multi-collinearity. In the
analysis of variables, it was found that all categorical variables
affected the lead time.

Fig. 8. Independent variables (3).
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Thus, the analysis was conducted using the 12 independent
variables shown in Fig. 7. Missing values were simply removed and
outliers were checked and removed by applying the IQR rule and
Cook's distance.

6.3. Prediction of the lead time for the spool procurement process

The third case is the prediction of the lead time for the spool
procurement process. In shipyards, the constructions of ships and
offshore platforms involve complicated processes from design to
production. In the case of offshore platforms, in particular, most of
the outfitting processes relate to spools, but problems occur due to
delivery delays because proper procurement management for
spools is difficult.

The supply chain data of shipyards consist of the time series data
of spools by process as well as various data related to spool fabri-
cation and installation. Among them, the lead times of the fabri-
cation and painting processes were targeted in this study. Nineteen
independent variables were defined based on the properties of the
spools, and the lead times of the fabrication and painting processes
were defined as dependent variables.

Correlation analysis and the analysis of variables were con-
ducted to analyze the correlations between the variables. Finally,
the analysis was conducted using 14 independent variables, as
shown in Fig. 8. Missing values were simply removed and outliers
were checked and removed by applying the IQR rule and Cook's
distance.

7. Analysis of results of the prediction models

7.1. Machine learning prediction models

Regression analysis, artificial neural network, and decision tree
were used as machine learning algorithms, and prediction models
were created according to the process data. In this study, prediction

was performed by classifying the results of analyzing the raw data
into Case 1 and the results of analyzing the preprocessed data into
Case 2 to analyze the influence of data preprocessing. Therefore, 24
models were finally created by classifying the data of the four
processes, namely, (1) cutting process, (2) erection process, (3)
spool fabrication process, and (4) spool painting process, according
to the analysis cases. The results of the performance evaluation of
the final prediction models are as follows (Tables 3e6)).

Fig. 9. Results of learning algorithm.

Table 6
Results of machine learning (4).

Case Regression
Analysis

Artificial Neural
Network

Decision tree

1 2 1 2 1 2

MAE 6.01 3.80 6.06 4.32 5.47 3.60
MAPE 35.1% 14.6% 35.5% 16.7% 31.9% 13.8%
RMSE 9.79 4.89 9.68 5.40 9.21 4.72
RMSLE 37.4% 17.1% 37.3% 18.8% 34.8% 16.4%

Table 7
Model cases of MLP.

Data Hidden Layer Batch Size

Case 1 MLP
Input Standardization(X)

3 100

Case 2 MLP
Input Standardization(X)

3 50

Case 3 MLP
Input Standardization(X)

3 30

Case 4 MLP
Input Standardization(X)

5 100

Case 5 MLP
Input Standardization(X)

10 100

Case 6 MLP
Input Standardization(O)

3 100
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The analysis using the evaluation criteria confirmed that Case 2
with data preprocessing exhibited higher prediction accuracy for all
process data. Among the algorithms, the decision tree model
exhibited excellent prediction accuracy. Moreover, the prediction
accuracy of the lead time for spool procurement was highest
compared to those of the cutting and erection processes, indicating
that process variables significantly affected the lead times.

7.2. Deep learning prediction models

The MLP model, which uses the “Keras” library, was applied as
the deep learning algorithm. ‘Keras’ provides intuitive APIs for deep
learning models, and engines dedicated to deep learning, such as
Tensorflow, Theano, and CNTK, are operated internally.

The structure of the MLP model can be defined by setting pa-
rameters, such as Epoch (number of learning iterations), Activation
(activation function), Batch Size, and Hidden Layer. Model learning,
which minimizes the loss function of the deep learning model, can
be performed while the weight is updated according to the Epoch

and Batch Size.
In this study, Epoch was fixed at 200 times, and the analysis

cases were classified according to the number of Hidden Layers and
the Batch Size, which is the number of samples used for updating
the weight. In addition, the input data were standardized, and the
subsequent results of the prediction models were analyzed to
examine the influence of the data distribution. Based on the model
setting of Case 1, Cases 2 and 3 were defined according to the Batch
Size and Cases 4 and 5 were defined according to the number of
Hidden Layers. Moreover, Case 6 was defined to examine the in-
fluence of the standardization of the input data (Table 7).

The results of the performance evaluation of the final prediction
models for the (1) cutting process, (2) erection process, (3) spool
fabrication process, and (4) spool painting process are presented in
Tables 8e11.

Case 1 with a large Batch Size exhibited a low error rate for the
cutting process, and Case 3 with a small Batch Size showed a low
error rate for the erection process. In the spool procurement pro-
cess, Case 6, wherein the input data were standardized, showed the
lowest error rate. Because the distribution of the spool fabrication
and painting process data exhibited severe skewness, the influence
of standardization was considered relatively high. In the above
analysis of the cutting and erection processes, the influence of data
standardization was considered not significant because relatively
even data distribution was observed. Moreover, as the appropriate
number of weight updates was different for each data, the Batch
Size that ensured a low error rate was different for each data.

Table 13
Results of random forest (1).

Case 1 Case 2 Case 3 Case 4 Case 5

MAE 4.53 4.53 4.53 4.54 4.54
MAPE 73.6% 73.8% 73.8% 74.3% 73.7%
RMSE 6.49 6.50 6.50 6.43 6.53
RMSLE 55.1% 55.1% 55.1% 54.6% 55.3%

Table 14
Results of random forest (2).

Case 1 Case 2 Case 3 Case 4 Case 5

MAE 7.26 7.28 7.29 7.47 7.17
MAPE 178.9% 178.2% 179.6% 188.6% 173.6%
RMSE 10.15 10.17 10.20 10.22 10.15
RMSLE 81.6% 81.6% 81.9% 83.6% 80.8%

Table 15
Results of random forest (3).

Case 1 Case 2 Case 3 Case 4 Case 5

MAE 5.34 5.36 5.37 5.44 5.35
MAPE 23.1% 23.2% 23.2% 23.6% 23.1%
RMSE 7.20 7.22 7.24 7.23 7.25
RMSLE 26.9% 27.0% 27.1% 27.1% 27.1%

Table 16
Results of random forest (4).

Case 1 Case 2 Case 3 Case 4 Case 5

MAE 3.04 3.06 3.06 3.11 3.04
MAPE 11.7% 11.7% 11.7% 11.9% 11.7%
RMSE 4.18 4.21 4.20 4.21 4.22
RMSLE 14.5% 14.6% 14.6% 14.6% 14.7%

Table 8
Results of deep learning (1).

Case 1 Case 2 Case 3 Case 4 Case 5 Case 6

MAE 5.56 5.59 5.63 5.46 5.64 5.33
MAPE 88.6% 113.0% 100.7% 102.6% 99.6% 96.8%
RMSE 7.31 7.16 7.31 7.01 7.25 6.98
RMSLE 59.2% 66.1% 62.8% 62.8% 62.2% 61.2%

Table 9
Results of deep learning (2).

Case 1 Case 2 Case 3 Case 4 Case 5 Case 6

MAE 12.43 12.43 12.43 12.43 12.43 12.43
MAPE 348.7% 348.8% 348.4% 348.9% 348.6% 348.8%
RMSE 15.57 15.57 15.57 15.57 15.57 15.57
RMSLE 114.6% 114.6% 114.6% 114.6% 114.6% 114.6%

Table 10
Results of deep learning (3).

Case 1 Case 2 Case 3 Case 4 Case 5 Case 6

MAE 7.71 7.60 7.71 7.62 8.51 5.74
MAPE 33.8% 30.3% 33.6% 34.0% 38.2% 25.1%
RMSE 9.82 10.06 9.90 9.69 10.86 7.51
RMSLE 35.9% 35.2% 36.1% 35.9% 39.6% 28.3%

Table 11
Results of deep learning (4).

Case 1 Case 2 Case 3 Case 4 Case 5 Case 6

MAE 4.28 4.33 4.24 4.28 4.29 3.23
MAPE 16.5% 16.8% 16.2% 16.4% 16.6% 12.3%
RMSE 5.38 5.39 5.38 5.38 5.38 4.41
RMSLE 18.7% 18.9% 18.6% 18.7% 18.7% 15.3%

Table 12
Model cases of random forest.

Ntree mtry

Case 1 500 5
Case 2 200 5
Case 3 100 5
Case 4 500 3
Case 5 500 10
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7.3. Ensemble learning prediction models

In this study, a learning model was created using random forest
as an ensemble learning algorithm. The structure of the random
forest model can be defined by setting parameters such as ntree,
which represents the number of decision trees, and mtry, which
represents the number of variables to be considered while deter-
mining the criterion for dividing the nodes. The default values for
ntree and mtry are automatically provided. However, in this study,
the values of ntree and mtry were adjusted to further improve the
performance of the model, and the analysis cases were classified
accordingly. Based on Case 1, Cases 2 and 3 were defined according
to the value of ntree and Cases 4 and 5 were defined according to
the value of mtry. (see Table 12).

The results of the performance evaluation of the final prediction
models for the (1) cutting process, (2) erection process, (3) spool
fabrication process, and (4) spool painting process are presented in
Tables 13e16.

In all the processes, the error rate was low when the value of
ntree was 500. This appears to be because as the value of ntree
increased, the generalization error converged to a certain value,
which prevented overfitting even though it took longer to construct
themodel. Moreover, the error ratewas lowwhen the value of mtry
was 5 in the cutting and spool procurement processes. However, in
the case of the erection process, the error rate was low when the
value of mtry was 10. Thus, it was confirmed that the appropriate
value of mtry was different depending on the data type. When the
value of mtry is too small, explanatory variables of small weights
are placed in the upper nodes, thereby forming complex trees with
increased degree of impurity. When the value of mtry is too large,
each tree becomes similar, thereby decreasing the predictive po-
wer. Therefore, appropriate tuning is required depending on the
data.

7.4. Final analysis results

Various learning algorithms were applied to construct the lead
time prediction models for shipbuilding, and the performance of
each prediction model was compared. Regression analysis, artificial
neural network, and decision tree were used as the machine
learning algorithms and MLP was used as the deep learning algo-
rithm. Random forest was used as an ensemble learning algorithm.
The results of the performance evaluations of the final prediction
models for the cutting process, erection process, spool fabrication
process, and spool painting process are given below (Fig. 9).

The analysis of the results according to the process data revealed
that the spool fabrication and painting processes showed slightly
lower error rates whereas the block erection process exhibited the
highest error rate.

Among the machine learning algorithms, the decision tree
model exhibited better results than the existing regression analysis
and artificial neural network. Moreover, it was confirmed that the
models with the deep learning algorithm showed better perfor-
mance than those with the machine learning algorithms and the
models with the ensemble learning algorithm exhibited better
performance than those with the deep learning algorithm.

8. Conclusion and future research plan

In this study, the machine learning methodology was applied to
systematically establish the master data for production lead times
maintained in shipyards. As the lead time master data have high
variability in shipbuilding production, the existing engineering
methodology has limitations in calculating quantity or time.
Therefore, this study attempted to improve the master data, which

significantly vary depending on the production environment, by
creating production lead time prediction models that consider
various product attributes and resources in shipyards.

Open source programming languages, such as R and Python,
were used for the data analysis and creation of the prediction
models. The prediction models were constructed by applying
various learning algorithms available in the development envi-
ronment. Three types of data were collected from shipyards in this
study. The analysis results are as follows.

The first analysis case was the prediction of the lead time for
cutting. Performance data for the mid-term schedule of the cutting
process were collected and lead time prediction models were
created using the algorithms. The average of the Mean Absolute
Percentage Error (MAPE) values was 91.1% and that of the Root
Mean Squared Logarithmic Error (RMSLE) values was 61.1%. The
ensemble learning algorithm exhibited the highest prediction
accuracy.

The second analysis case was the prediction of the lead time for
block erection. Prediction models were created by identifying the
various process variables of the block and using them as indepen-
dent variables. As a result, the average of the MAPE values was
251.5% and that of the RMSLE values was 96.4%, which were the
highest among all the analysis cases. The ensemble learning algo-
rithm exhibited the highest prediction accuracy. In the case of the
erection process, it appears that there are limitations to predicting
the lead time using the machine learning methodology because the
raw data were extremely irregular.

The third analysis case was the prediction of the lead time for
spool supply chain. Prediction models were created using analysis
algorithms in the same manner as in the above cases. As a result,
the lead time for the spool fabrication process had an averageMAPE
value of 27.2% and the average RMSLE value was 30.3%. For the
painting lead time, the average of the MAPE values was 13.8% and
that of the RMSLE values was 16.4%. The ensemble learning algo-
rithm exhibited the highest prediction accuracy.

When data preprocessing was intensively performed in the
analysis process, the error rates of the prediction models decreased
when compared with previous studies. Moreover, it was confirmed
that among all lead time prediction models, the prediction models
with the ensemble learning algorithm exhibited better perfor-
mance even though the performance varied depending on the
process data.Whilemachine learning and deep learning algorithms
exhibit remarkable prediction performance as they are normalized
and have large scales, the use of excessively complex models may
cause an increase in the generalization error due to overfitting to an
insufficient number of training data. Overfitting means that a
learning model excessively learns training data. In this case, pre-
diction accuracy above a certain level was observed for the training
data, but the model is not accurate for new data. However, in the
case of ensemble learning, it appears that better performance was
observed because the overfitting problem could be addressed by
combining multiple learning results even though learning was
performed using a simple algorithm.

These results indicate that the master data can be managed
more systematically through the predicted lead times than through
the existing standard lead time. Moreover, the predicted lead times
can support fast decision-making during work planning and make
it possible to gain insight into the analysis technique and variable
setting according to the process data.

While machine learning algorithms are commonly used for
prediction of values, deep learning algorithms not only predict
simple values but also present various methodologies to analyze
time series data. Therefore, better decision-making can be achieved
during work planning if it is possible to predict the time series for
various processes in shipbuilding production in the future.
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Appendix

To help understand this paper, a description of the variables in
the data used in the study was added.
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Table 18
Description of the variables in the block erection process

Column name Description

Length (m) Length of the block
Width (m) Width of the block
Height (m) Height of the block
Area (m^2) Area of the block
Sub Weight (ton) Weight of the block member
Net Weight (ton) Net weight of the block
Weight (ton) Net weight of the block plus maximum load weight
Planning L/T (day) Lead time planned in production planning step
Project No. Number of the project
Stage Block erection stage
Division Block erection section
Construction Block erection process cooperative company
Block Group Group of the block
Direction Position of the block
Block Serial No. Serial number of the block

Table 19
Description of the variables in the spool procurement process

Column name Description

DIA Diameter of the spool
Length Length of the spool
Weight Weight of the spool
Member Count Number of connected members
Joint Count Number of joints between connected members
Count Number of the block
Emergency Priority of spool production
Block Number of the block
Problem Encountered problems during the process
Apply Lead Time Variables related to emergency
PLT Used Pallet
STG Spool installation stage
Service Type of fluid flowing into the spool
Pass Penetration status
Sch Thickness of the spool
Material Material of the spool
Making Co Spool making process cooperative company
After2 Co Spool painting process cooperative company
Distribution Co Spool distribution process cooperative company

Table 17
Description of the variables in the block cutting process

Column name Description

Weight (kg) Weight of the block
Precipitation (mm) Precipitation in working period
Planning L/T (day) Lead time planned in production planning step
Ship Type Type of the ship
Block Group Group of the block
Block Direction Position of the block
Planning Cooperation Block cutting process cooperative company
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