• 제목/요약/키워드: Prediction Error estimate

검색결과 225건 처리시간 0.024초

실시간 가중 회기최소자승법을 사용한 익일 부하예측 (Real-Time Building Load Prediction by the On-Line Weighted Recursive Least Square Method)

  • 한도영;이재무
    • 설비공학논문집
    • /
    • 제12권6호
    • /
    • pp.609-615
    • /
    • 2000
  • The energy conservation is one of the most important issues in recent years. Especially, the energy conservation through improved control strategies is one of the most highly possible area to be implemented in the near future. The energy conservation of the ice storage system can be accomplished through the improved control strategies. A real time building load prediction algorithm was developed. The expected highest and the lowest outdoor temperature of the next day were used to estimate the next day outdoor temperature profile. The measured dry bulb temperature and the measured building load were used to estimate system parameters by using the on-line weighted recursive least square method. The estimated hourly outdoor temperatures and the estimated hourly system parameters were used to predict the next day hourly building loads. In order to see the effectiveness of the building load prediction algorithm, two different types of building models were selected and analysed. The simulation results show less than 1% in error for the prediction of the next day building loads. Therefore, this algorithm may successfully be used for the development of improved control algorithms of the ice storage system.

  • PDF

Electricity Price Prediction Model Based on Simultaneous Perturbation Stochastic Approximation

  • Ko, Hee-Sang;Lee, Kwang-Y.;Kim, Ho-Chan
    • Journal of Electrical Engineering and Technology
    • /
    • 제3권1호
    • /
    • pp.14-19
    • /
    • 2008
  • The paper presents an intelligent time series model to predict uncertain electricity market price in the deregulated industry environment. Since the price of electricity in a deregulated market is very volatile, it is difficult to estimate an accurate market price using historically observed data. The parameter of an intelligent time series model is obtained based on the simultaneous perturbation stochastic approximation (SPSA). The SPSA is flexible to use in high dimensional systems. Since prediction models have their modeling error, an error compensator is developed as compensation. The SPSA based intelligent model is applied to predict the electricity market price in the Pennsylvania-New Jersey-Maryland (PJM) electricity market.

천정부착 랜드마크 위치와 에지 화소의 이동벡터 정보에 의한 이동로봇 위치 인식 (Mobile Robot Localization using Ceiling Landmark Positions and Edge Pixel Movement Vectors)

  • 진홍신;아디카리 써얌프;김성우;김형석
    • 제어로봇시스템학회논문지
    • /
    • 제16권4호
    • /
    • pp.368-373
    • /
    • 2010
  • A new indoor mobile robot localization method is presented. Robot recognizes well designed single color landmarks on the ceiling by vision system, as reference to compute its precise position. The proposed likelihood prediction based method enables the robot to estimate its position based only on the orientation of landmark.The use of single color landmarks helps to reduce the complexity of the landmark structure and makes it easily detectable. Edge based optical flow is further used to compensate for some landmark recognition error. This technique is applicable for navigation in an unlimited sized indoor space. Prediction scheme and localization algorithm are proposed, and edge based optical flow and data fusing are presented. Experimental results show that the proposed method provides accurate estimation of the robot position with a localization error within a range of 5 cm and directional error less than 4 degrees.

A comparative assessment of bagging ensemble models for modeling concrete slump flow

  • Aydogmus, Hacer Yumurtaci;Erdal, Halil Ibrahim;Karakurt, Onur;Namli, Ersin;Turkan, Yusuf S.;Erdal, Hamit
    • Computers and Concrete
    • /
    • 제16권5호
    • /
    • pp.741-757
    • /
    • 2015
  • In the last decade, several modeling approaches have been proposed and applied to estimate the high-performance concrete (HPC) slump flow. While HPC is a highly complex material, modeling its behavior is a very difficult issue. Thus, the selection and application of proper modeling methods remain therefore a crucial task. Like many other applications, HPC slump flow prediction suffers from noise which negatively affects the prediction accuracy and increases the variance. In the recent years, ensemble learning methods have introduced to optimize the prediction accuracy and reduce the prediction error. This study investigates the potential usage of bagging (Bag), which is among the most popular ensemble learning methods, in building ensemble models. Four well-known artificial intelligence models (i.e., classification and regression trees CART, support vector machines SVM, multilayer perceptron MLP and radial basis function neural networks RBF) are deployed as base learner. As a result of this study, bagging ensemble models (i.e., Bag-SVM, Bag-RT, Bag-MLP and Bag-RBF) are found superior to their base learners (i.e., SVM, CART, MLP and RBF) and bagging could noticeable optimize prediction accuracy and reduce the prediction error of proposed predictive models.

공공청사 개산견적 정확도 향상을 위한 공사비 영향요인 분석 (Analysis of Impact Factors for the Improvement of Conceptual Cost Estimation Accuracy for Public Office Building)

  • 조영호;윤석헌
    • 한국건축시공학회지
    • /
    • 제21권5호
    • /
    • pp.495-506
    • /
    • 2021
  • 본 연구는 기획단계에서 이루어지는 개산견적 예측 모델의 정확도를 향상시키기 위하여 최적의 영향요인 조합을 제시하였다. 이에 기획단계에서 활용이 가능한 정량적인 영향요인을 선정하여 상관분석 통해 공사비에 가장 많은 영향을 주는 연면적을 중심으로 8가지의 영향요인 조합을 설정하였다. 8가지 영향요인 조합을 다중회귀분석을 통하여 VIF계수 및 회귀식을 도출하였다. VIF계수를 통해 연면적, 건축면적과 층 영향요인을 함께 사용할 경우 연면적과 건축면적 두 영향요인 간의 종속적인 관계를 확인하였다. 이에 독립성이 예측 모델 정확도의 관계를 분석하기 위하여 실 사례 프로젝트 10건을 회귀식에 대입하여 정확도를 분석하였다. 분석결과, 독립성이 확보가 안 된 영향요인 조합은 다른 영향요인에 비해 정확도 떨어지는 것을 확인할 수 있다. 따라서 최대한 많은 영향요인을 활용하는 것보다 최적의 영향요인 조합을 선정하는 것이 예측 모델의 정확도를 향상시킬 수 있다고 판단되며, 본 연구에서는 연면적과 건축면적을 활용하였을 경우 정확도가 가장 높은 것을 확인하였다.

시변 지연시간을 갖는 이산형 프로세스의 적응제어 (Adaptive Control for Discrete Process with Time Varying Delay)

  • 김영철;김국헌;정찬수;양흥석
    • 대한전기학회논문지
    • /
    • 제35권11호
    • /
    • pp.503-510
    • /
    • 1986
  • A new algorithm based on the concept of prediction error minimization is suggested to estimate the time varying delay in discrete processes. In spite of the existence of the stochastic noise, this algorithm can estimate time varying delay accurately. Computation time of this algorithm is far less than that of the previous extended parameter methods. With the use of this algorithm, generalized minimum variance control shows good control behavior in simulations.

  • PDF

기계학습을 이용한 염화물 확산계수 예측모델 개발 (Development of Prediction Model of Chloride Diffusion Coefficient using Machine Learning)

  • 김현수
    • 한국공간구조학회논문집
    • /
    • 제23권3호
    • /
    • pp.87-94
    • /
    • 2023
  • Chloride is one of the most common threats to reinforced concrete (RC) durability. Alkaline environment of concrete makes a passive layer on the surface of reinforcement bars that prevents the bar from corrosion. However, when the chloride concentration amount at the reinforcement bar reaches a certain level, deterioration of the passive protection layer occurs, causing corrosion and ultimately reducing the structure's safety and durability. Therefore, understanding the chloride diffusion and its prediction are important to evaluate the safety and durability of RC structure. In this study, the chloride diffusion coefficient is predicted by machine learning techniques. Various machine learning techniques such as multiple linear regression, decision tree, random forest, support vector machine, artificial neural networks, extreme gradient boosting annd k-nearest neighbor were used and accuracy of there models were compared. In order to evaluate the accuracy, root mean square error (RMSE), mean square error (MSE), mean absolute error (MAE) and coefficient of determination (R2) were used as prediction performance indices. The k-fold cross-validation procedure was used to estimate the performance of machine learning models when making predictions on data not used during training. Grid search was applied to hyperparameter optimization. It has been shown from numerical simulation that ensemble learning methods such as random forest and extreme gradient boosting successfully predicted the chloride diffusion coefficient and artificial neural networks also provided accurate result.

다층퍼셉트론 기반 리 샘플링 방법 비교를 위한 마이크로어레이 분류 예측 에러 추정 시스템 (Classification Prediction Error Estimation System of Microarray for a Comparison of Resampling Methods Based on Multi-Layer Perceptron)

  • 박수영;정채영
    • 한국정보통신학회논문지
    • /
    • 제14권2호
    • /
    • pp.534-539
    • /
    • 2010
  • 게놈 연구에서 수천 개의 특징들은 비교적 작은 샘플들로부터 모아진다. 게놈 연구의 목적은 미래 관찰들의 결과를 예측하는 분류기를 만드는 것이다. 분류기를 만들기 위해서는 특징 선택, 모델 선택 그리고 예측 평가 등의 3단계 과정을 거친다. 본 논문은 예측 평가에 초점을 맞추고 모든 슬라이드의 사분위수를 똑같게 맞추는 quantilenormalization 적용하여 마이크로어레이 데이터를 표준화 한 후 특징 선택에 앞서 예측 모델의 '진짜' 예측 에러를 평가하기 위해 몇 개의 방법들을 비교하는 시스템을 고안하고 방법들의 예측 에러를 비교 분석 하였다. LOOCV는 전체적으로 작은 MSE와 bias를 나타내었고, 크기가 작은 샘플에서 split 방법과 2-fold CV는 매우 좋지 않는 결과를 보였다. 계산적으로 번거로운 분석에 대해서는 10-fold CV가 LOOCV보다 오히려 더 낳은 경향을 보였다.

저주파진동 해석을 위한 다구간 파라미터 추정 방법 (A Parameter Estimation Method of Multiple Time Interval for Low Frequency Oscillation Analysis)

  • 심관식;김상태;최준호;남해곤;안선주
    • 전기학회논문지
    • /
    • 제63권7호
    • /
    • pp.875-882
    • /
    • 2014
  • In this paper, we propose a new parameter estimation method that can deal with the data of multiple time intervals simultaneously. If there are common modes in the multiple time intervals, it is possible to create a new polynomial by summing the coefficients of the prediction error polynomials of each time interval. By calculating the roots of the new polynomial, it is possible to estimate the common modes that exist in each time interval. The accuracy of the proposed parameter estimation method has been proven by using appropriate test signals.

기동표적의 상태추정을 이용한 포의 사격통제 시스템 향상 연구 (Gun fire Control System Design with Maneuvering Target State Estimates)

  • 이동관;송택렬;한두희
    • 대한전기학회논문지:시스템및제어부문D
    • /
    • 제55권3호
    • /
    • pp.98-109
    • /
    • 2006
  • Fire control system(FCS) errors can be classified as hardware errors, filter prediction errors, effective ballistic function errors, and aiming errors. Among these errors, the filter prediction errors are the most significant error sources. To reduce them, a target future position calculation method using the acceleration estimate is suggested and it is compared with the constant velocity target prediction method. Simulation results show that the suggested method has better performance than the constant velocity prediction method. Target tracking algorithm is established with multiple target tracking filters based on IMM structure.