• Title/Summary/Keyword: Prediction Algorithms

Search Result 1,033, Processing Time 0.03 seconds

Courses Recommendation Algorithm Based On Performance Prediction In E-Learning

  • Koffi, Dagou Dangui Augustin Sylvain Legrand;Ouattara, Nouho;Mambe, Digrais Moise;Oumtanaga, Souleymane;ADJE, Assohoun
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.2
    • /
    • pp.148-157
    • /
    • 2021
  • The effectiveness of recommendation systems depends on the performance of the algorithms with which these systems are designed. The quality of the algorithms themselves depends on the quality of the strategies with which they were designed. These strategies differ from author to author. Thus, designing a good recommendation system means implementing the good strategies. It's in this context that several research works have been proposed on various strategies applied to algorithms to meet the needs of recommendations. Researchers are trying indefinitely to address this objective of seeking the qualities of recommendation algorithms. In this paper, we propose a new algorithm for recommending learning items. Learner performance predictions and collaborative recommendation methods are used as strategies for this algorithm. The proposed performance prediction model is based on convolutional neural networks (CNN). The results of the performance predictions are used by the proposed recommendation algorithm. The results of the predictions obtained show the efficiency of Deep Learning compared to the k-nearest neighbor (k-NN) algorithm. The proposed recommendation algorithm improves the recommendations of the learners' learning items. This algorithm also has the particularity of dissuading learning items in the learner's profile that are deemed inadequate for his or her training.

Joint Blind Data/Channel Estimation Based on Linear Prediction

  • Ahn, Kyung-Seung;Byun, Eul-Chool;Baik, Heung-Ki
    • Proceedings of the IEEK Conference
    • /
    • 2001.09a
    • /
    • pp.869-872
    • /
    • 2001
  • Blind identification and equalization of communication channel is important because it does not need training sequence, nor does it require a priori channel information. So, we can increase the bandwidth efficiency. The linear prediction error method is perhaps the most attractive in practice due to the insensitive to blind channel estimator and equalizer length mismatch as well as for its simple adaptive algorithms. In this paper, we propose method for fractionally spaced blind equalizer with arbitrary delay using one-step forward prediction error filter from second-order statistics of the received signals for SIMO channel. Our algorithm utilizes the forward prediction error as training sequences for data estimation and desired signal for channel estimation.

  • PDF

ADS-B based Trajectory Prediction and Conflict Detection for Air Traffic Management

  • Baek, Kwang-Yul;Bang, Hyo-Choong
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.13 no.3
    • /
    • pp.377-385
    • /
    • 2012
  • The Automatic Dependent Surveillance Broadcast (ADS-B) system is a key component of CNS/ATM recommended by the International Civil Aviation Organization (ICAO) as the next generation air traffic control system. ADS-B broadcasts identification, positional data, and operation information of an aircraft to other aircraft, ground vehicles and ground stations in the nearby region. This paper explores the ADS-B based trajectory prediction and the conflict detection algorithm. The multiple-model based trajectory prediction algorithm leads accurate predicted conflict probability at a future forecast time. We propose an efficient and accurate algorithm to calculate conflict probability based on approximation of the conflict zone by a set of blocks. The performance of proposed algorithms is demonstrated by a numerical simulation of two aircraft encounter scenarios.

YSIM for City and Regional Planning ("도시 및 지역계획 지원을 위한 YSIM(Yangsuk's SIMulation)")

  • 강양석
    • Journal of Korean Society of Transportation
    • /
    • v.5 no.1
    • /
    • pp.59-74
    • /
    • 1987
  • A prediction is an indispensable element to research of Social Science, especially in Regional planning, City planning, and Transportation planning. Since 1930s, varieties of prediction methods have been developed. In the 1980s, numerical models have been used by high-developed computers. even though the numerical models can be figured mathematically, it could not be applied practically due to it's expertness and complicateness. And even professional planners often can not use their ideas which are valuable experiences in prediction process, because they are not knowledgable for numerical models. The YSIM developed by author, is available as follows. i)Numerical modeling of professional experiences ii)Providing a foundation of large-scale model iii) Understanding of research object structure The YSIM make use of matrix to identify the system structure which is similar to the Cross Impact Method. To evaluated the YSIM availabilities, it is compared with the early developed methodologies such as KSIM, QSIM, and SPIN. As the result, it was confirmed that YSIM was more accurate in the prediction. The algorithms in YSIM is programmed for use of PCs.

  • PDF

Genetic Algorithm based Hybrid Ensemble Model (유전자 알고리즘 기반 통합 앙상블 모형)

  • Min, Sung-Hwan
    • Journal of Information Technology Applications and Management
    • /
    • v.23 no.1
    • /
    • pp.45-59
    • /
    • 2016
  • An ensemble classifier is a method that combines output of multiple classifiers. It has been widely accepted that ensemble classifiers can improve the prediction accuracy. Recently, ensemble techniques have been successfully applied to the bankruptcy prediction. Bagging and random subspace are the most popular ensemble techniques. Bagging and random subspace have proved to be very effective in improving the generalization ability respectively. However, there are few studies which have focused on the integration of bagging and random subspace. In this study, we proposed a new hybrid ensemble model to integrate bagging and random subspace method using genetic algorithm for improving the performance of the model. The proposed model is applied to the bankruptcy prediction for Korean companies and compared with other models in this study. The experimental results showed that the proposed model performs better than the other models such as the single classifier, the original ensemble model and the simple hybrid model.

Performance Improvements with Two-Source Decomposition and DCT-WHT for Transform Coding of Interframe Prediction Errors (프레임간 예측오차의 신호분리 및 DCT-WHT를 이용한 변환 부호화의 성능 개선)

  • 채유석;박래홍
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.25 no.12
    • /
    • pp.1513-1521
    • /
    • 1988
  • BMA, which is generally adopted in low bit-rate motion-compensated coding, performs properly under an assumption of rigid-body motion of moving objects. Since, however, the assumption can not be held in practical coding , the prediction errors with low correlation are generated. For effective transform codings of the interframe prediction errors, we propose a new transform coding technique which decomposes the prediction errors into two sources and then transforms them with DCT and WHT consecutively. The performance of the proposed algorithm is compared to those of the two conventional algorithms in terms of bit rate and subjective image quality.

  • PDF

Toward global optimization of case-based reasoning for the prediction of stock price index

  • Kim, Kyoung-jae;Ingoo Han
    • Proceedings of the Korea Inteligent Information System Society Conference
    • /
    • 2001.06a
    • /
    • pp.399-408
    • /
    • 2001
  • This paper presents a simultaneous optimization approach of case-based reasoning (CBR) using a genetic algorithm(GA) for the prediction of stock price index. Prior research suggested many hybrid models of CBR and the GA for selecting a relevant feature subset or optimizing feature weights. Most studies, however, used the GA for improving only a part of architectural factors for the CBR system. However, the performance of CBR may be enhanced when these factors are simultaneously considered. In this study, the GA simultaneously optimizes multiple factors of the CBR system. Experimental results show that a GA approach to simultaneous optimization of CBR outperforms other conventional approaches for the prediction of stock price index.

  • PDF

Prediction of the compressive strength of fly ash geopolymer concrete using gene expression programming

  • Alkroosh, Iyad S.;Sarker, Prabir K.
    • Computers and Concrete
    • /
    • v.24 no.4
    • /
    • pp.295-302
    • /
    • 2019
  • Evolutionary algorithms based on conventional statistical methods such as regression and classification have been widely used in data mining applications. This work involves application of gene expression programming (GEP) for predicting compressive strength of fly ash geopolymer concrete, which is gaining increasing interest as an environmentally friendly alternative of Portland cement concrete. Based on 56 test results from the existing literature, a model was obtained relating the compressive strength of fly ash geopolymer concrete with the significantly influencing mix design parameters. The predictions of the model in training and validation were evaluated. The coefficient of determination ($R^2$), mean (${\mu}$) and standard deviation (${\sigma}$) were 0.89, 1.0 and 0.12 respectively, for the training set, and 0.89, 0.99 and 0.13 respectively, for the validation set. The error of prediction by the model was also evaluated and found to be very low. This indicates that the predictions of GEP model are in close agreement with the experimental results suggesting this as a promising method for compressive strength prediction of fly ash geopolymer concrete.

Two-dimensional attention-based multi-input LSTM for time series prediction

  • Kim, Eun Been;Park, Jung Hoon;Lee, Yung-Seop;Lim, Changwon
    • Communications for Statistical Applications and Methods
    • /
    • v.28 no.1
    • /
    • pp.39-57
    • /
    • 2021
  • Time series prediction is an area of great interest to many people. Algorithms for time series prediction are widely used in many fields such as stock price, temperature, energy and weather forecast; in addtion, classical models as well as recurrent neural networks (RNNs) have been actively developed. After introducing the attention mechanism to neural network models, many new models with improved performance have been developed; in addition, models using attention twice have also recently been proposed, resulting in further performance improvements. In this paper, we consider time series prediction by introducing attention twice to an RNN model. The proposed model is a method that introduces H-attention and T-attention for output value and time step information to select useful information. We conduct experiments on stock price, temperature and energy data and confirm that the proposed model outperforms existing models.

Mobility Prediction Algorithms Using User Traces in Wireless Networks

  • Luong, Chuyen;Do, Son;Park, Hyukro;Choi, Deokjai
    • Journal of Korea Multimedia Society
    • /
    • v.17 no.8
    • /
    • pp.946-952
    • /
    • 2014
  • Mobility prediction is one of hot topics using location history information. It is useful for not only user-level applications such as people finder and recommendation sharing service but also for system-level applications such as hand-off management, resource allocation, and quality of service of wireless services. Most of current prediction techniques often use a set of significant locations without taking into account possible location information changes for prediction. Markov-based, LZ-based and Prediction by Pattern Matching techniques consider interesting locations to enhance the prediction accuracy, but they do not consider interesting location changes. In our paper, we propose an algorithm which integrates the changing or emerging new location information. This approach is based on Active LeZi algorithm, but both of new location and all possible location contexts will be updated in the tree with the fixed depth. Furthermore, the tree will also be updated even when there is no new location detected but the expected route is changed. We find that our algorithm is adaptive to predict next location. We evaluate our proposed system on a part of Dartmouth dataset consisting of 1026 users. An accuracy rate of more than 84% is achieved.