Proceedings of the Korean Institute of Information and Commucation Sciences Conference
/
2018.10a
/
pp.69-71
/
2018
Looking at Korea's manufacturing industry, there are many old manufacturing plants. In fact, the manufacturing process of the product inventory management and the unit price of the product are all created by using Excel, and the factory is operated by using it. Also, the operator can not predict the failure of the equipment in order to produce the product at work. Problems related to this may result in the loss of the documents during the instruction and work process between the manager and the worker, and the communication between the manager and the worker can not be properly performed, There is appear a situation in which the operation is continued by using the equipment without recognizing in the failure. In this paper, we propose a method for upgrading the aging manufacturing plant to improve the productivity and productivity of the product by predicting the efficient inventory management, unit price management, production volume, and the operator's failure prediction.
Journal of the Korea Institute of Information Security & Cryptology
/
v.24
no.6
/
pp.1197-1213
/
2014
Due to the increase in size of the computer network, the network security systems such as a firewall, IDS, IPS generate much more vast amount of information related to network security. So detecting signs of hidden security threats has become more difficult. Security personnels' 'Network Security Situational Awareness(NSSA)' is effectively determining the security situation of overall computer network on the basis of the relation between the security events that occur in the several views. The process of situational awareness is divided into three stages of the 'identification,' 'understanding' and 'prediction'. And 'identification' and 'understanding' are prerequisites for 'predicting' and the following appropriate responses. But 'identification' and 'understanding' in the vast amount of information became more difficult. In this paper, we propose Honeycomb security situational awareness visualization system that is designed to help NSSA in large-scale networks by using visualization techniques known effective to the 'identification' and 'understanding' stages. And we identified the empirical effects of this system on the basis of the 'VAST Challenge 2012' data.
The smart home is a technology that can monitor and control by connecting everything to a communication network in various fields such as home appliances, energy consumers, and security devices. The Smart home is developing not only automatic control but also learning situation and user's taste and providing the result accordingly. This paper proposes a model that can provide a comfortable indoor environment control service for the user's characteristics by detecting the user's behavior as well as the automatic remote control service. The whole system consists of ESP 8266 with sensor and Wi-Fi, Firebase as a real-time database, and a smartphone application. This model is divided into functions such as learning mode when the home appliance is operated, learning control through learning results, and automatic ventilation using indoor and outdoor sensor values. The study used moving averages for temperature and humidity in the control of home appliances such as air conditioners, humidifiers and air purifiers. This system can provide higher quality service by analyzing and predicting user's characteristics through various machine learning and deep learning.
Self-adaptive software is software that adapts by itself to system requirements about the recognized problems without stopping the software cycle. In order to reduce the unnecessary adaptation in the system having the critical points, we propose proactive approach which can predict the future operation after a critical point. In this paper, we predict the future operation after a critical point using a hybrid model to deal with the characteristics of the observed data with the linear and non-linear pattern. The operation of the prediction method is determined on a timing decision indicator based on the prediction accuracy. The two main points of contributions of this paper are to reduce uncertainty about the future operation by predicting the situation after a critical point using hybrid model and to reduce unnecessary adaptation implementation by deciding a timing based on a timing decision indicator.
El-Sefy, M.;Yosri, A.;El-Dakhakhni, W.;Nagasaki, S.;Wiebe, L.
Nuclear Engineering and Technology
/
v.53
no.10
/
pp.3275-3285
/
2021
A Nuclear Power Plant (NPP) is a complex dynamic system-of-systems with highly nonlinear behaviors. In order to control the plant operation under both normal and abnormal conditions, the different systems in NPPs (e.g., the reactor core components, primary and secondary coolant systems) are usually monitored continuously, resulting in very large amounts of data. This situation makes it possible to integrate relevant qualitative and quantitative knowledge with artificial intelligence techniques to provide faster and more accurate behavior predictions, leading to more rapid decisions, based on actual NPP operation data. Data-driven models (DDM) rely on artificial intelligence to learn autonomously based on patterns in data, and they represent alternatives to physics-based models that typically require significant computational resources and might not fully represent the actual operation conditions of an NPP. In this study, a feed-forward backpropagation artificial neural network (ANN) model was trained to simulate the interaction between the reactor core and the primary and secondary coolant systems in a pressurized water reactor. The transients used for model training included perturbations in reactivity, steam valve coefficient, reactor core inlet temperature, and steam generator inlet temperature. Uncertainties of the plant physical parameters and operating conditions were also incorporated in these transients. Eight training functions were adopted during the training stage to develop the most efficient network. The developed ANN model predictions were subsequently tested successfully considering different new transients. Overall, through prompt prediction of NPP behavior under different transients, the study aims at demonstrating the potential of artificial intelligence to empower rapid emergency response planning and risk mitigation strategies.
Journal of the Korea Institute of Building Construction
/
v.19
no.5
/
pp.439-448
/
2019
There are various factors affecting the success and failure of an apartment building project. However, after the unit sale price has been determined and the sale has started, the most important factor affecting on the project is the initial sales ratio for one month after the sale. Generally, developers predict an initial sales ratio by various data such as economic situation, the trend of the housing market, and the house price near the business place. However, it is very difficult for these factors to be calculated quantitatively in connection with the initial sales ratio. Therefore, the purpose of this study is to develop a regression model for forecasting the initial sales ratio of apartment building projects. For this study, pre-sales data collection, correlation analysis between influencing factors, and regression model development are performed sequentially. The results of this study are used as basic data for predicting the initial sales ratio in the feasibility analysis of apartment building projects and are used as key data for the development of the risk management model.
The unprecedented pandemic caused by the COVID-19 has led to a massive global public health campaign to slow the spread of the virus. Thus, this study examines the importance of individual's prevention behavior intention by adapting health belief model(HBM). In addition, we added social variables to understand the prevention behavior better considering the situation in which collective behaviors are important. The online survey results(N=298) showed that higher level of perceived severity, perceived susceptibility, perceived benefits, perceived peril, perceived social norms and lower level of perceived responsibility led to higher prevention behavior intention. Peril was the most influential factor among all the variables. In addition, perceived severity and social norms followed after that. Additional analysis also implied that socio-HBM model we proposed better explained the prevention behavior intention than traditional HBM.
People who spend more time alone tend to report higher levels of loneliness. However, whether people experience loneliness in solitude can differ The current research investigated the role of a sense of power as a predictor of loneliness among people who lack social interaction. investigated factors predicting loneliness in people with little social time large-scale survey data. As a result of discriminant analysis, a sense of power was verified as a factor that lonely non-lonely groups. a sense of power As a result, a causal relationship between a sense of power and social loneliness was confirmed. When people feel alone, a high sense of power can work as a buffer against loss of belongingness and the experience of social loneliness. This research focused on psychological rather than situational factors to alleviate loneliness in the current situation where social encounters are limited due to the increase of single-person households and the 19 pandemic.
The Journal of the Institute of Internet, Broadcasting and Communication
/
v.23
no.2
/
pp.67-71
/
2023
Recently, there are increasing cases of managing software labs by assigning virtual PCs in the cloud instead of physical PCs to each student. In this paper, we design and implement a Linux-based software practice platform that allows students to efficiently build their environments in the cloud. In our platform, instructors can create and control virtual machine templates for all students at once, and students practice on their own machines as administrators. Instructors can also troubleshoot each machine and restore its state. Meanwhile, the biggest obstacle to implementing this approach is the difficulty of predicting the costs of cloud services instantly. To cope with this situation, we propose a model that can estimate the cost of cloud resources used. By using daemons in each user's virtual machine, we instantly estimate resource usage and costs. Although our model has very low overhead, the predicted results are very close to the actual resource usage measured by cloud service providers. To further validate our model, we used the proposed platform in a Linux practice lecture for a semester and confirmed that the proposed model is very accurate.
The microcomputer program PileNSF (Pile Negative Skin Friction) is developed by the authors in a graphical user interface (GUI) environment using $MATLAB^{(R)}$ for predicting the bearing capacity of a pile embedded in a consolidating ground by surcharge loading. The proposed method extends the one-dimensional soil-pile model based on the nonlinear load transfer method in OpenSees to perform an advanced one-dimensional consolidation settlement analysis based on finite strain. The developed program has significant features of incorporating Mikasa's finite strain consolidation theory that accounts for reduction in the thickness of the clay layer as well as the change of the soil-pile interface length during the progress of consolidation. In addition, the consolidating situation of the ground by surcharge filling after the time of pile installation can also be considered in the analysis. The program analysis by the presented method has been verified and validated with several case studies of long-term test on single piles subjected to negative skin friction. Predicted results of negative skin friction (downdrag and dragload) as a result of long from consolidation settlement are shown to be in good agreement with measured and observed case data.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.