• Title/Summary/Keyword: Precoder

Search Result 82, Processing Time 0.027 seconds

SLNR-Based Precoder Design for Multiuser MIMO in Distributed Antenna Systems (분산 안테나 시스템에서 다중 사용자 MIMO를 위한 SLNR 기반의 프리코더 설계)

  • Seo, Bangwon
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.18 no.6
    • /
    • pp.75-82
    • /
    • 2018
  • In this paper, we consider a precoder design for downlink multiuser multiple-input multiple-output (MU-MIMO) in distributed antenna systems (DAS). In DAS, remote radio heads (RRHs) are placed at geographically different locations within a cell area. Three different precoder design schemes are proposed to maximize the separate or joint signal-to-leakage-plus-noise ratio (SLNR) metrics by considering RRH sum power or per-RRH power constraints. The analytical closed-form form solution for each optimization problem is presented. Through computer simulation, we show that the joint SLNR based precoding schemes have better signal-to-interference-plus-noise ratio (SINR) and bit error rate (BER) performances than the separate SLNR based schemes. Also, it is shown that the precoding scheme with RRH sum power constraint has better performance than the precoding scheme with per-RRH power constraint.

Hybrid Precoder Design for Massive MIMO Systems with OSA structure (부분 중첩 안테나 배열 구조를 갖는 대용량 MIMO 시스템을 위한 하이브리드 프리코더 설계)

  • Seo, Bangwon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.25 no.2
    • /
    • pp.274-279
    • /
    • 2021
  • Since conventional massive antenna systems require too many RF chains, they have disadvantages of high implementation cost and complexity. To overcome this problem, hybrid precoding schemes have been proposed. But, they are still of high implementation cost and complexity because RF chains are connected to all antenna elements. In this paper, we consider massive MIMO systems with overlapped sub-array (OSA) structure and then, propose a hybrid precoding scheme. In the overlapped subarray structure, RF analog precoding matrix has a sparse structure where many elements of RF analog precoding matrix are zeros. Using this sparse property, we propose a GTP-based precoder design method for RF and baseband digital precoding. Through simulation, we show that the proposed scheme has more than 85% of the spectral efficiency of the fully-connected structure while having 20~30% of complexity of it.

Adaptive Opimization of MIMO Codebook to Channel Conditions for Split Linear Array (분할된 선형배열안테나를 위한 채널 환경에 적응하는 MIMO 코드북 최적화)

  • Mun, Cheol;Jung, Chang-Kyoo;Kwak, Yun-Sik
    • Journal of Advanced Navigation Technology
    • /
    • v.13 no.5
    • /
    • pp.736-741
    • /
    • 2009
  • In this paper, adaptive optimizations of precoder codebook to channel conditions is proposed for a multiuser multiple-input multiple-output (MIMO) system with split linear array and limited feedback. We propose adaptive method for constructing a precoder codebook by coloring the random vector quantization codebook at each link by using limited long-term feedback information on transmit correlation matrix of each link. It is shown that the proposed multiuser MIMO codebook design scheme outperforms existing multiuser MIMO codebook design schemes for various channel conditions in terms of the average sum throughput of multiuser MIMO systems using zero-forcing maximum eigenmode transmission and limited feedback.

  • PDF

The Interference Nulling using Weighted Precoding in the MIMO Cognitive Radio System (다중 안테나를 사용하는 인지무선 시스템에서 가중치 precoder를 통한 간섭 제거 기법)

  • Lee, Seon-yeong;Sohn, Sung-Hwan;Jang, Sung-Jeen;Kim, Jae-Moung
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.8A
    • /
    • pp.768-776
    • /
    • 2010
  • In this paper, we consider a linear precoding for the effective spectrum sharing in multiple-input multiple-output (MIMO) cognitive radio system where a secondary user coexists with primary users. The secondary user employs the orthogonal space time block coding (OSTBC) at the transmitter. Assuming a flat fading channel and a maximum-likelihood receiver, the optimum precoder forces transmission referred to as eigen-beamforming. In this paper, to eliminate the interference, ZF criterion based eigen-beamforming is not only used but also the precoding weight is chosen to cancel the remaining interference. This weight is computed by vector's likelihood. Simulation results show stronger interference suppression capability, better SER performance, and higher capacity than the algorithm in [4].

Precoder Distribution and Adaptive Codebook in Wideband Precoding

  • Long, Hang;Kim, Kyeong Jin;Xiang, Wei;Wang, Jing;Liu, Yuanan;Wang, Wenbo
    • ETRI Journal
    • /
    • v.34 no.5
    • /
    • pp.655-665
    • /
    • 2012
  • Based on wideband precoding (WBP) in the multiple-input multiple-output orthogonal frequency division multiplexing system, an adaptive nonuniform codebook is presented in this paper. The relationship between the precoder distribution and spatial correlation is analyzed at first. A closed-form expression based on overlapped isosceles triangles is proposed as an approximation of the precoder distribution. Then, the adaptive codebook design is derived with the approximate distribution to minimize quantization errors. The capacity and bit error rate performance demonstrate that the adaptive codebook with WBP outperforms the conventional fixed uniform codebook.

Source and Relay Precoder Design for MIMO Relay System using Imperfect Channel Information (불완전한 채널 정보를 이용하는 다중 안테나 릴레이 시스템의 소스 및 릴레이 전처리 필터 설계)

  • Park, Won-Woo;Lee, Chung-Yong
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.49 no.2
    • /
    • pp.17-22
    • /
    • 2012
  • This paper deals with a precoder design method when the system has imperfect channel information. When MIMO relay system knows the correlation coefficient between perfect channel and imperfect channel information and the variance of the difference between perfect channel and correlated imperfect channel, source and relay precoders are designed to maximize the upper bound of the channel capacity. Also, we investigate channel capacities of the system using proposed precoder and compare with the optimal value according to the correlation and the variance of error channel by simulations.

Transmit Precoder Design for Two-User Broadcast Channel with Statistical and Delayed CSIT

  • Sun, Yanjing;Zhou, Shu;Cao, Qi;Wang, Yanfen;Liu, Wen;Zhang, Xiaoguang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.5
    • /
    • pp.2124-2141
    • /
    • 2018
  • Recent studies have revealed the efficacy of incorporating delayed channel state information at transmit side (CSIT) in transmission scheme design. This paper focuses on transmit precoder design to maximize the ergodic sum-rate in a two-user Multiple-Input Single-Output (MISO) system with delayed and statistical CSIT. A new transmit strategy which precodes signals in all transmit slots is proposed in this paper, denoted as all time-slots precoding Alternative MAT (AAMAT). There is a common procedure in conventional delayed-CSIT based schemes, which is retransmitting the overheard interferences. Since the retransmitting signal is intended to both users, all previous schemes tend to use only one antenna. We however figure out an improvement in spectral efficiency could be realized if all antennas can be utilized. In this paper, we detail the design of the procoder which enabling all antennas and also we compute a lower bound of the ergodic sum-rate in an ideal condition. In addition, simulation results demonstrate the superiority of our proposed scheme.

Turbo Decoding for Precoded Systems over Multipath Fading Channels

  • Zhang, Qing;Le-Ngoc, THo
    • Journal of Communications and Networks
    • /
    • v.6 no.3
    • /
    • pp.203-208
    • /
    • 2004
  • A combined precoding and turbo decoding strategy for multi-path frequency-selective fading channels is presented. The precoder and multi-path fading channel are jointly modeled as a finite-state probabilistic channel to provide the multi-stage turbo decoder with its statistics information. Both a priori and a posteriori probabilities are used in the metric computation to improve the system performance. Structures of the combined turbo-encoder, interleaver, and precoder in the transmitter and two-stage turbo decoder in the receiver are described. Performance of the proposed scheme in fixed, Rician and Rayleigh multi-path fading channels are evaluated by simulation. The results indicate that the combined precoding and two-stage turbo decoding strategy provides a considerable performance improvement while maintaining the same inner structure of a conventional turbo decoder.

SOQPSK-TG Receiver Using Trellis State Combining (트렐리스 상태 결합을 이용한 SOQPSK-TG 수신기)

  • Gu, Young Mo;Boo, Jungil;Kim, Bokki
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.47 no.3
    • /
    • pp.240-244
    • /
    • 2019
  • SOQPSK-TG which consists of differential precoder and CPM modulator was adopted as telemetry standard because of its high power and bandwidth efficiency. We proposed four-state Viterbi decoder for SOQPSK-TG. Reducing the trellis state to four was possible by simplifying frequency pulse of SOQPSK-TG to square pulse of symbol length 2 and combing this with differential precoder. Compared with conventional SOQPSK-TG receivers, computer simulation result shows about 1 dB performance improvement was achieved at BER of $10^{-5}$ in AWGN channel.