• Title/Summary/Keyword: Precoder

Search Result 82, Processing Time 0.02 seconds

A Cooperative Jamming Based Joint Transceiver Design for Secure Communications in MIMO Interference Channels

  • Huang, Boyang;Kong, Zhengmin;Fang, Yanjun;Jin, Xin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.4
    • /
    • pp.1904-1921
    • /
    • 2019
  • In this paper, we investigate the problem of secure communications in multiple-input-multiple-output interference networks from the perspective of physical layer security. Specifically, the legitimate transmitter-receiver pairs are divided into different categories of active and inactive. To enhance the security performances of active pairs, inactive pairs serve as cooperative jammers and broadcast artificial noises to interfere with the eavesdropper. Besides, active pairs improve their own security by using joint transceivers. The encoding of active pairs and inactive pairs are designed by maximizing the difference of mean-squared errors between active pairs and the eavesdropper. In detail, the transmit precoder matrices of active pairs and inactive pairs are solved according to game theory and linear programming respectively. Experimental results show that the proposed algorithm has fast convergence speed, and the security performances in different scenarios are effectively improved.

Least squares decoding in binomial frequency division multiplexing

  • Myungsup Kim;Jiwon Jung;Ki-Man Kim
    • ETRI Journal
    • /
    • v.45 no.2
    • /
    • pp.277-290
    • /
    • 2023
  • This paper proposes a method that can reduce the complexity of a system matrix by analyzing the characteristics of a pseudoinverse matrix to receive a binomial frequency division multiplexing (BFDM) signal and decode it using the least squares (LS) method. The system matrix of BFDM can be expressed as a band matrix, and as this matrix contains many zeros, its amount of calculation when generating a transmission signal is quite small. The LS solution can be obtained by multiplying the received signal by the pseudoinverse matrix of the system matrix. The singular value decomposition of the system matrix indicates that the pseudoinverse matrix is a band matrix. The signal-to-interference ratio is obtained from their eigenvalues. Meanwhile, entries that do not contribute to signal generation are erased to enhance calculation efficiency. We decode the received signal using the pseudoinverse matrix and the removed pseudoinverse matrix to obtain the bit error rate performance and to analyze the difference.

Performance analysis of precoding-aided differential spatial modulation systems with transmit antenna selection

  • Kim, Sangchoon
    • ETRI Journal
    • /
    • v.44 no.1
    • /
    • pp.117-124
    • /
    • 2022
  • In this paper, the performance of precoding-aided differential spatial modulation (PDSM) systems with optimal transmit antenna subset (TAS) selection is examined analytically. The average bit error rate (ABER) performance of the optimal TAS selection-based PDSM systems using a zero-forcing (ZF) precoder is evaluated using theoretical upper bound and Monte Carlo simulations. Simulation results validate the analysis and demonstrate a performance penalty < 2.6 dB compared with precoding-aided spatial modulation (PSM) with optimal TAS selection. The performance analysis reveals a transmit diversity gain of (NT-NR+1) for the ZF-based PDSM (ZF-PDSM) systems that employ TAS selection with NT transmit antennas, NS selected transmit antennas, and NR receive antennas. It is also shown that reducing the number of activated transmit antennas via optimal TAS selection in the ZF-PDSM systems degrades ABER performance. In addition, the impacts of channel estimation errors on the performance of the ZF-PDSM system with TAS selection are evaluated, and the performance of this system is compared with that of ZF-based PSM with TAS selection.

해양통신에서 uplink coverage 확장을 위한 relay 송수신 기법연구

  • 이경제;김동구
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2022.06a
    • /
    • pp.77-78
    • /
    • 2022
  • Currently, communication at sea is more difficult than communication at inland due to the movement of route signs by waves. This paper conducts research on relay transmission and reception techniques to extend coverage in uplink situations. The uplink maritime communication environment between inland base stations and buoys located a certain distance inland was viewed as two hops, and a beam generated according to the number of antennas was selected and a performance analysis was conducted considering the movement of buoys measured by sensors.

  • PDF

A Cell Selection Technique Considering MIMO Precoding (MIMO 프리코딩을 고려한 셀 탐색 기법)

  • Kim, Han Seong;Hong, Tae Howan;Cho, Yong Soo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37A no.12
    • /
    • pp.1076-1084
    • /
    • 2012
  • In the CS/CB(Coordinated Scheduling/Beamforming) scheme, the cell edge user throughput is increased by selecting MIMO (Multiple Input Multiple Output) precoders which can minimize the interferences from adjacent base stations (BSs). However, in current LTE(Long Term Evolution) systems, the serving cell is selected in the initialization stage by using the synchronization signals and cell specific reference signals transmitted by adjacent BSs with a single antenna. The selected BS in the initialization stage may not be the best one since the MIMO precoding gain has not been considered in the cell selection stage. In this paper, a new cell selection technique is proposed for LTE systems with MIMO precoder by taking into account the effect of the precoder in the initialization stage. The proposed technique enables a user equipment (UE) in the cell boundary to select the serving BS by using the information (channel rank, effective channel capacity, and effective SINR(Signal to Interference plus Noise Ratio)) acquired from cell specific reference signals of candidate BSs. It is verified by computer simulation that the proposed technique can increase the channel capacity significantly in the multi-cell environments, compared with the conventional CS/CB scheme.

Codebook-Based Interference Alignment for Uplink MIMO Interference Channels

  • Lee, Hyun-Ho;Park, Ki-Hong;Ko, Young-Chai;Alouini, Mohamed-Slim
    • Journal of Communications and Networks
    • /
    • v.16 no.1
    • /
    • pp.18-25
    • /
    • 2014
  • In this paper, we propose a codebook-based interference alignment (IA) scheme in the constant multiple-input multiple-output (MIMO) interference channel especially for the uplink scenario. In our proposed scheme, we assume cooperation among base stations (BSs) through reliable backhaul links so that global channel knowledge is available for all BSs, which enables BS to compute he transmit precoder and inform its quantized index to the associated user via limited rate feedback link. We present an upper bound on the rate loss of the proposed scheme and derive the scaling law of the feedback load to maintain a constant rate loss relative to IA with perfect channel knowledge. Considering the impact of overhead due to training, cooperation, and feedback, we address the effective degrees of freedom (DOF) of the proposed scheme and derive the maximization of the effective DOF. From simulation results, we verify our analysis on the scaling law to preserve the multiplexing gain and confirm that the proposed scheme is more effective than the conventional IA scheme in terms of the effective DOF.

Study on 2×2 MIMO Detection in ATSC 3.0 Systems (ATSC 3.0 시스템에서 2×2 MIMO 검출에 대한 연구)

  • Lee, Woon Hyun;Kim, Jeongchang;Park, Sung Ik;Hur, Namho
    • Journal of Broadcast Engineering
    • /
    • v.22 no.6
    • /
    • pp.755-764
    • /
    • 2017
  • In this paper, we design transmitter and receiver structures for a $2{\times}2$ multiple-input multiple-output (MIMO) in ATSC 3.0 systems and analyze the performance of the $2{\times}2$ MIMO system. In the ATSC 3.0 MIMO systems, spatial diversity and multiplexing gains can be obtained using the spatial demultiplexer and precoder. In this paper, we present the structures of the transmitter and receiver for ATSC 3.0 MIMO systems. Also, we present performance results of the $2{\times}2$ MIMO system through computer simulations.

Performance of ZF Precoder in Downlink Massive MIMO with Non-Uniform User Distribution

  • Kong, Chuili;Zhong, Caijun;Zhang, Zhaoyang
    • Journal of Communications and Networks
    • /
    • v.18 no.5
    • /
    • pp.688-698
    • /
    • 2016
  • In this paper, we investigate the achievable sum rate and energy efficiency of downlink massive multiple-input multiple-output antenna systems with zero-forcing precoding, by taking into account the randomness of user locations. Specifically, we propose two types of non-uniform user distributions, namely, center-intensive user distribution and edge-intensive user distribution. Based on these user distributions, we derive novel tight lower and upper bounds on the average sum rate. In addition, the impact of user distributions on the optimal number of users maximizing the sum rate is characterized. Moreover, by adopting a realistic power consumption model which accounts for the transmit power, circuit power and signal processing power, the energy efficiency of the system is studied. In particular, closed-form solutions for the key system parameters, such as the number of antennas and the optimal transmit signal-to-noise ratio maximizing the energy efficiency, are obtained. The findings of the paper suggest that user distribution has a significant impact on the system performance: for instance, the highest average sum rate is achieved with the center-intensive user distribution, while the lowest average sum rate is obtained with the edge-intensive user distribution. Also, more users can be served with the center-intensive user distribution.

Multi-Mode Precoding Scheme Based on Interference Channel in MIMO-Based Cognitive Radio Networks

  • Jung, Minchae;Hwang, Kyuho;Choi, Sooyong
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2011.07a
    • /
    • pp.137-140
    • /
    • 2011
  • A precoding strategy is one of the representative interference management techniques in cognitive radio (CR) network which is a typical interference-limited environment. The interference minimization approach to precoding is an appropriate scheme to mitigate the interference efficiently while it may cause the capacity loss of the desired channel. The precoding scheme for the maximal capacity of the desired channel improves the capacity of the desired channel while it increases the interference power and finally causes the capacity loss of the interfered users. Therefore, we propose a precoding scheme which satisfies these two conflicting goals and manages the interference signal in such an interference-limited environment. The proposed scheme consists of two steps. First, the precoder nulls out the largest singular value of the interference channel to mitigate the dominant interference signal based on the interference minimization approach. Second, the transmitter calculates the sum capacities per mode and selects a mode to maximize the sum capacity. In the second step, each mode consists of the right singular vectors corresponding to the singular values except the largest singular value eliminated in the first step. Simulation results show that the proposed precoding scheme not only efficiently mitigate the interference signal, but also has the best performance in terms of the sum capacity in a MIMO-based CR network.

  • PDF

Performance of Space Time Block Coded-Spatial Multiplexing Systems in Limited Feedback Channel (제한된 귀환채널에서 시공간블록부호화를 적용한 다중화 시스템의 성능)

  • Hwang, Hyeon-Chyeol;Shin, Seung-Hoon;Lim, Jong-Kyoung;Kim, Seok-Ho;Kwak, Kyung-Sup
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.30 no.9A
    • /
    • pp.772-780
    • /
    • 2005
  • In this paper, an efficient pre-processing in space tine block coded-spatial multiplexing systems is presented. The pre-processing scheme is designed empirically with extending the diagonally weighted orthogonal space time-block coded diversity system to spatial multiplexing system. Simulation results show the proposed scheme outperforms both the precoder using the predefued codebooks and typical antenna selection scheme over moderate doppler frequency in limited feedback channel.