• Title/Summary/Keyword: Precision machine system

Search Result 1,250, Processing Time 0.027 seconds

Ultra-Precision Machining Using Fast Tool Servo and On-Machine Form Measurement of Large Aspheric Mirrors (Fast Tool Servo를 이용한 대구경 반사경의 초정밀 가공 및 기상 형상 측정)

  • 김의중;송승훈;김민기;김태형
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.4
    • /
    • pp.129-134
    • /
    • 2000
  • This paper presents the development of ultra-precision machining process of large aspheric aluminum mirrors with a maximum diameter of 620 mm. An ultra-precision machine, "Nanoturn60", developed by Daewoo Heavy Industries Ltd. is used for machining and motion errors of the machine are compensated by using the FTS developed by IAE(Institue for Advanced Engineering) during the machining process. To check the form accuracy of machined aspheric surfaces, on-machine form measurement system is developed. This measurement system consists of air bearing touch probe, straight edge, and laser sensor. With in-process error compensation by FTS(Fast Tool Servo), aspheric mirrors with the from accuracy of submicron order are obtained. obtained.

  • PDF

Machine monitoring for implementing a virtual machine (가상기계 구현을 위한 공작기계 모니터링)

  • 배완준;강무진
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.311-315
    • /
    • 2000
  • In thls paper, a remote machine monitoring system for a vimal machine is proposed. The monltonng system is one of the core functmns of a vimd machne that provides a modeling and simulation environment for machining processes and management of the machine life cycle. The proposed system contains the modules for investigating tool wear using neural network and web-based real time process monitoring. An example implementation for tool wear and machining status monitoring is illustrated

  • PDF

Dynamic analysis on belt-drive system of machine tools (공작 기계 벨트 구동계의 동적 해석)

  • Kim, S.G.;Lee, S.Y.;Lee, J.M.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.12 no.1
    • /
    • pp.104-111
    • /
    • 1995
  • The needs of ultraprecision machine tools, which manufacture and machine the high precision parts used in computers, semiconductors and othe rprecise machines, have been increased recentrly. So it is important to design the driving parts of the ultraprecision machine tools which affect significantly on the performance of them. In this paper, the dynamic analyses on the belt-drive system were studied. The correlational equations between the acoustic natural frequency and the tension of belt were derived by experiments. The dynamic delections while the dynamic loads on the motor system changed were analyzed by the finite element analysis. The nonlinear characteristics of the bearings on the dynamic performance was studied and the belt connecting the motor to the spindle of a machine tool was modeled by the truss element and the beam element.

  • PDF

Development of the Straightness Compensation System for Ultra-Precision Machine Using DSP (DSP를 이용한 초정밀가공기용 진직도 보상시스템 개발)

  • 이대희;이종호;김호상;민흥기;김민기;김태형
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.283-286
    • /
    • 2002
  • This paper presents the straightness compensation system which is a device for improving the machining accuracy of ultra-precision machines by synchronizing the position of diamond tool tip with machine error motion. Sine it is actuated by piezoelectric actuator with highly nonlinear hysteresis characteristics, the feedback control schemes such as Proportional Integral(PI), are required and realized by measuring the displacements of diamond tool tip. for the better tracking performance, the controller was implemented using TMS320C32 32bit floating-point DSP which is fast so that the real-time control is possible. In addition, stand alone type DSP board was chosen fur the easy assembly into the ultra-precision machines. The experimental results show good command tracking performance and the motion error of the machine is satisfactorily compensated during the machining process.

  • PDF

Fault Diagnosis in a Virtual Machine using CORBA (CORBA를 이용한 가상기계에서의 고장진단에 관한 연구)

  • 서정완;강무진;정순철;김성환
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.109-114
    • /
    • 1997
  • As CNC machine tool is one of core elements of manufacturing system, it is much important that it remains without troubleshoots. As a virtual machine is a recent alternative using IT for optimal utilization of CNC machine tool, it is a computer model that represents a CNC machine tool. But a virtual machine is still conceptual. So, in this paper, it is proposed that a virtual machine be a realistic model in the fault diagnosis module. For this purpose, the fault diagnosis system of machine tool using CORBA and fault diagnosis expert system has been implemented. Using this system, we have expections to diagnose exactly and prompty without the restriction of time or location, to reduce MTTR(Mean Time To Repair) and finally to increase the availability of manufacturing system.

  • PDF

Development of Integrated Design System for Structural Design of Machine Tools (공작기계 구조물 설계를 위한 통합설계 시스템 개발)

  • 박면웅;손영태;조성원
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.1
    • /
    • pp.229-239
    • /
    • 2003
  • The design process of machine tools is regarded as a sequential, discrete, and inefficient works as it requires various kinds of design tools and many working hours. This paper describes an integrated design system embedding a design methodology that can support efficiently and systematically the conceptual structural design of machine tools. The system is a knowledge-based design system and has four machine-tool-specific functional modules including configuration design, configuration analysis, structure design, and structural analysis support module. Through the configuration design and analysis module, a machine configuration appropriate for design requirements is selected, and then the arrangement of ribs fer each structural part is decided in the structure design module. Also, the structural analysis support module is used to evaluate design result by utilizing structural analysis software, ANSYS. The system is applied to design of a tapping machine, and shows that the machine structure can be designed fast and conveniently by processing each design step interactively.

회전기계의 고온환경에서의 원격계측

  • 김치엽;최만용;허석한
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1992.10a
    • /
    • pp.158-160
    • /
    • 1992
  • To control internal temperature distribution of moulding machine is very important in molding products such as Polycabonate. Nylon and PVDF. In this experiment, we developed temperature measurement system in order to control temperature of moulding machine. It was measured by telemetering system because of rotational mechanism. Form experimental results, it was sufficient to apply to moulding machine under 250 .deg C.