• Title/Summary/Keyword: Precision control

Search Result 4,603, Processing Time 0.029 seconds

Robust Digital Nonlinear Friction Compensation - Theory (견실한 비선형 마찰보상 이산제어 - 이론)

  • 강민식;김창제
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.14 no.4
    • /
    • pp.88-96
    • /
    • 1997
  • This paper suggests a new non-linear friction compensation for digital control systems. This control adopts a hysteresis nonlinear element which can introduce the phase lead of the control system to compensate the phase delay comes from the inherent time delay of a digital control. A proper Lyapunov function is selected and the Lyapunov direct method is used to prove the asymptotic stability of the suggested control.

  • PDF

Nonlinear sliding mode robustness control of Axial Electro-Magnetic suspension system (1축 자기 부상 장치의 비선형 슬라이딩 모드 강인 제어)

  • 고유석;송창섭;이강원
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.10a
    • /
    • pp.474-477
    • /
    • 1995
  • In this paper, the nonlinear model of axial electro-magnetic suspension(EMS) system is presented. The characteristic of attracyion force is analyzed by FEM. Some simulation is given to compare the sliding mode control based on the input-output linearization with the classical linear control using Taylor approximation. Real result of regulating control, transient response comparison, and robustness control with disturbance using the sliding mode method is presented.

  • PDF

Teleoperator Control Systems with Short Time Delay (시간 지연을 포함한 원격제어 시스템)

  • 장진규;한명철
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.721-724
    • /
    • 2000
  • This paper has been demonstrated to be essential to successful telemanipulator control when the communication delay between master arms in the operator control station and telemanipulators in the remote site. This paper includes the human dynamics to generate a control command, the monitoring force feedback in order to robust under short time delays and the controller not to requre the derivative of interaction forces. Simulation results suggest that, the proposed control system should be superior to conventional systems in terms of performance and robustness under short time delays.

  • PDF

Trajectory Control for Re-entry Vehicle (재진입비행체의 궤적제어)

  • 박수홍;이대우
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.361-364
    • /
    • 1997
  • The re-enty guidance design involves trajectory optimization, generation of a reference drag acceleration profile with the satisfaction of trajectory constraints. This reference drag acceleration profile can be considered as the reference trajectory. This paper proposes the atmospheric re-entry system which is composed of longitudinal, later and range control. This paper shows the a performance of a re-entry guidance and control system using feedback linearization control and predictive control.

  • PDF

Design of an Adaptive Fuzzy Backstepping Controller for a Brush DC Motor Turning a Robotic Load (로봇부하 구동용 브러시 DC 모터의 적응 퍼지 백 스테핑 제어기 설계)

  • Kim, Young-Tae
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.23 no.9 s.186
    • /
    • pp.92-101
    • /
    • 2006
  • In this paper a adaptive backstepping control scheme is proposed for control of a do motor driving a one-link manipulator. Fuzzy logic systems are used to approximate the unknown nonlinear function including the parametric uncertainty and disturbance throughout the entire electromechanical system. A compensation controller is also proposed to estimate the bound of approximation error. Thus the asymptotic stability of the closed-loop control system can be obtained. Numerical simulations are included to show the effectiveness of the proposed controller.

Robust multivariable control of tandem cold mills (연속 냉간 압연시스템의 강인한 다변수 제어)

  • Kim, J.S.;Kim, C.M.;Kwak, J.H.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.11 no.5
    • /
    • pp.66-74
    • /
    • 1994
  • A loop-shaping LQ controller is synthesized for tandem cold mills. And a new loop- shaping technique is suggested for LQ controller design. The suggested loop-shaping LQ control system is compared with the standard loop-shaping LQ control system. The simulation results show that the theickness and interstand tension control accuracy of tandem cold mills can be improved by the compensated loop-shaping LQ controller.

  • PDF

Robust Digital Nonlinear Friction Compensation (견실한 비선형 마찰보상 이산제어)

  • 강민식;송원길;김창재
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1996.11a
    • /
    • pp.987-993
    • /
    • 1996
  • This report suggests a new non-linear friction compensation for digital control systems. This control adopts a hysteric nonlinear clement which can introduce the phase lead of the control system to compensate the phase delay comes from the inherent time delay of a digital control. The Lyapunov direct method is used to prove the asymtotic stability of the suggested control, and the stability and the effectiveness are verified analytically and experimentally on a single axis servo driving system.

  • PDF

GPC 기법을 이용한 자기동조 PID 제어기 설계

  • 윤강섭;이만형
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.04b
    • /
    • pp.326-329
    • /
    • 1995
  • PID control has been widely used for real control system Further, there are muchreasearches on control schemes of tuning PID gains. However, there is no results for discrete-time systems with unknown time-dealy and unknown system parameters. On the other hand, Generalized predictive control has been reported as a useful self-tuning control technique for systems with unknown time-delay. So, in this study, based on minimization of a GPC criterion, we present a self-tuning PID control algorithm for unknown parameters and unknown tiem-delay system. A numerical simulation was presented to illuatrate the effectiveness of this method.

  • PDF

Adaptive robust control for a direct drive SCARA robot manipulator (직접구동 SCARA 로봇 머니퓰레이터에 대한 적응견실제어)

  • Lee, Ji-Hyung;Kang, Chul-Goo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.12 no.8
    • /
    • pp.140-146
    • /
    • 1995
  • In case the uncertainty existing in a system is assumed to satisfy the matching condition and to be come-bounded. Y. H. Chen proposed an adaptive robust control algorithm which introduced adaptive sheme for a design parameter into robust deterministic controls. In this paper, the adaptive robust control algorithm is applied to the position tracking control of direct drive robots, and simulation and experimental studies are conducted to evaluate control performance.

  • PDF

Position Tracking Control on the XY Ball-screw Drive System with the Nonlinear Dynamic Friction (비선형 동적마찰을 갖는 XY볼-스크류 구동계에 대한 위치 추종제어)

  • Han, Seong-Ik
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.6
    • /
    • pp.51-61
    • /
    • 2002
  • A tracking control scheme on the XY ball-screw drive system in the presence of nonlinear dynamic friction is proposed. A nonlinear dynamic friction is regarded as the Lund-Grenoble friction model to compensate effects of friction. The conventional VSC method that often has been used as a non-model-based friction controller has poor tracking performance in high-precision position tracking application since it cannot compensate the friction effect below a certain precision level completely. Thus to improve the precise position tracking performance, we propose the integral type VSC method combined with the friction-model-based observer. Then this control scheme has the high precise tracking performance compared with the non-model-baked VSC method and the PID control method with a similar observer. This fact is shown through the experiment on the XY ball-screw drive system with the nonlinear dynamic friction.